Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells

Tamoxifen resistance is often observed in the majority of estrogen receptor-positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 7; p. e0132285
Main Authors Woo, Yu Mi, Shin, Yubin, Lee, Eun Ji, Lee, Sunyoung, Jeong, Seung Hun, Kong, Hyun Kyung, Park, Eun Young, Kim, Hyoung Kyu, Han, Jin, Chang, Minsun, Park, Jong-Hoon
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 09.07.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tamoxifen resistance is often observed in the majority of estrogen receptor-positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9--tamoxifen-resistant human breast cancer cell lines derived from MCF7--are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: JHP MC YMW. Performed the experiments: YMW YS EJL SL SHJ HKK EYP. Analyzed the data: YMW HKK EYP. Contributed reagents/materials/analysis tools: JHP MC HKK JH. Wrote the paper: YMW JHP MC.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0132285