Potential application of Aloe Vera-derived plant-based cell in powering wireless device for remote sensor activation

It is well proven that electrical energy can be harvested from the living plants which can be used as a potential renewable energy source for powering wireless devices in remote areas where replacing or recharging the battery is a difficult task. Therefore, harvesting electrical energy from living p...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 12; p. e0227153
Main Authors Chong, Peng Lean, Singh, Ajay Kumar, Kok, Swee Leong
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.12.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is well proven that electrical energy can be harvested from the living plants which can be used as a potential renewable energy source for powering wireless devices in remote areas where replacing or recharging the battery is a difficult task. Therefore, harvesting electrical energy from living plants in remote areas such as in farms or forest areas can be an ideal source of energy as these areas are rich with living plants. The present paper proposes a design of a power management circuit that can harness, store and manage the electrical energy which is harvested from the leaves of Aloe Barbadensis Miller (Aloe Vera) plants to trigger a transmitter load to power a remote sensor. The power management circuit consists of two sections namely; an energy storage system that acts as an energy storage reservoir to store the energy harvested from the plants as well as a voltage regulation system which is used to boost and manage the energy in accordance to a load operation. The experimental results show that the electrical energy harvested from the Aloe Vera under a specific setup condition can produce an output of 3.49 V and 1.1 mA. The harvested energy is being channeled to the power management circuit which can boost the voltage to 10.9 V under no load condition. The harvested energy from the plants boosted by the power management circuit can turn ON the transmitter automatically to activate a temperature and humidity sensor to measure the environmental stimuli periodically with a ton of 1.22 seconds and toff of 0.46 seconds. This proves that this new source of energy combined with a power management circuit can be employed for powering the wireless sensor network for application in the Internet of Things (IoT).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0227153