A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions

Protocols for testing and reporting emissions of Harmful and Potentially Harmful Constituents (HPHCs) from electronic cigarettes (e-cigs) are lacking. The premise of this study is that multi-path relationships may be developed to describe interactions between product characteristics, use behavior an...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 11; p. e0206341
Main Authors Robinson, Risa J, Eddingsaas, Nathan C, DiFrancesco, A Gary, Jayasekera, Shehan, Hensel, Jr, Edward C
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.11.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Protocols for testing and reporting emissions of Harmful and Potentially Harmful Constituents (HPHCs) from electronic cigarettes (e-cigs) are lacking. The premise of this study is that multi-path relationships may be developed to describe interactions between product characteristics, use behavior and emissions to develop appropriate protocols for tobacco product regulatory compliance testing. This study proposes a framework consisting of three component terms: HPHC mass concentration, HPHC mass ratio and total particulate mass (TPM) concentration. The framework informs experiments to investigate dependence of aerosol emissions from five electronic cigarettes spanning several design generations and three e-liquids for six repeated trials at each of ten flow conditions. Results are reported for TPM concentration as a function of flow conditions spanning the range of natural environment topography observed in prior studies. An empirical correlation describing TPM concentration as a function of flow conditions and coil power setting (6, 7.5 and 10 watts) for the Innokin iTaste MVP 2.0 vaporizer with Innokin iClear 30 dual coil tank is presented. Additional results document the impact of flow conditions and wick and coil design on TPM concentration through comparison of the Innokin iClear 30 (upper coil, capillary action wick) and the Innokin iClear X.I (lower coil, gravity fed wick) operated at 7.5 watts. The impact of e-liquid on TPM concentration is illustrated by comparing emissions from an NJOY Vape Pen filled with AVAIL Arctic Blast, Tobacco Row, and Mardi Gras e-liquids. TPM concentration is shown to depend upon flow conditions across a range of e-cigarette product designs including cig-a-like, pen-style, box-mod and emergent disposable-cartridge style devices. A framework provides a foundation for reporting emissions across a variety of e-cigs, e-liquids and research laboratories. The study demonstrates TPM concentration is a function of topography behavior (i.e. puff flow rate and puff duration) for varying device operating power and product characteristics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
NCE, AGD, and SJ also contributed equally to this work. RJR and ECH are joint senior authors on this work. NCE, AGD, and SJ are joint junior authors on this work.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0206341