Exploring differentially expressed genes between anagen and telogen secondary hair follicle stem cells from the Cashmere goat (Capra hircus) by RNA-Seq

Hair follicle stem cells (HFSCs) have been shown to be essential in the development and regeneration of hair follicles (HFs). The Inner Mongolia Cashmere goat (Capra hircus) has two types of HFs, primary and secondary, with cashmere being produced from the secondary hair follicle. To identify the ge...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 4; p. e0231376
Main Authors He, Nimantana, Su, Rui, Wang, Zhiying, Zhang, Yanjun, Li, Jinquan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.04.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hair follicle stem cells (HFSCs) have been shown to be essential in the development and regeneration of hair follicles (HFs). The Inner Mongolia Cashmere goat (Capra hircus) has two types of HFs, primary and secondary, with cashmere being produced from the secondary hair follicle. To identify the genes associated with cashmere growth, transcriptome profiling of anagen and telogen secondary HFSCs was performed by RNA-Seq. The RNA-Seq analysis generated over 58 million clean reads from each group, with 2717 differentially expressed genes (DEGs) detected between anagen and telogen, including 1500 upregulated and 1217 downregulated DEGs. A large number of DEGs were predominantly associated with cell part, cellular process, binding, biological regulation and organelle. In addition, the PI3K-Akt, MAPK, Ras and Rap1 signaling pathways may be involved in the growth of HFSCs cultured in vitro. The RNA-Seq results showed that the well-defined HFSC signature genes and cell cycle-associated genes showed no significant differences between anagen and telogen HFSCs, indicating a relatively quiescent cellular state of the HFSCs cultured in vitro. These results are useful for future studies of complex molecular mechanisms of hair follicle cycling in cashmere goats.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0231376