The Chaperone-Like Activity of α-Synuclein Attenuates Aggregation of Its Alternatively Spliced Isoform, 112-Synuclein In Vitro: Plausible Cross-Talk between Isoforms in Protein Aggregation

Abnormal oligomerization and aggregation of α-synuclein (α-syn/WT-syn) has been shown to be a precipitating factor in the pathophysiology of Parkinson's disease (PD). Earlier observations on the induced-alternative splicing of α-syn by Parkinsonism mimetics as well as identification of region s...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 6; p. e98657
Main Authors Manda, Krishna Madhuri, Yedlapudi, Deepthi, Korukonda, Srikanth, Bojja, Sreedhar, Kalivendi, Shasi V.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.06.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abnormal oligomerization and aggregation of α-synuclein (α-syn/WT-syn) has been shown to be a precipitating factor in the pathophysiology of Parkinson's disease (PD). Earlier observations on the induced-alternative splicing of α-syn by Parkinsonism mimetics as well as identification of region specific abnormalities in the transcript levels of 112-synuclein (112-syn) in diseased subjects underscores the role of 112-syn in the pathophysiology of PD. In the present study, we sought to identify the aggregation potential of 112-syn in the presence or absence of WT-syn to predict its plausible role in protein aggregation events. Results demonstrate that unlike WT-syn, lack of 28 aa in the C-terminus results in the loss of chaperone-like activity with a concomitant gain in vulnerability to heat-induced aggregation and time-dependent fibrillation. The effects were dose and time-dependent and a significant aggregation of 112-syn was evident at as low as 45 °C following 10 min of incubation. The heat-induced aggregates were found to be ill-defined structures and weakly positive towards Thioflavin-T (ThT) staining as compared to clearly distinguishable ThT positive extended fibrils resulting upon 24 h of incubation at 37 °C. Further, the chaperone-like activity of WT-syn significantly attenuated heat-induced aggregation of 112-syn in a dose and time-dependent manner. On contrary, WT-syn synergistically enhanced fibrillation of 112-syn. Overall, the present findings highlight a plausible cross-talk between isoforms of α-syn and the relative abundance of these isoforms may dictate the nature and fate of protein aggregates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: KMM SVK. Performed the experiments: KMM DY SK. Analyzed the data: KMM SB SVK. Contributed reagents/materials/analysis tools: SVK. Contributed to the writing of the manuscript: KMM SVK.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0098657