Development of chimeric and bifunctional antagonists for CLR/RAMP receptors

CGRP, adrenomedullin (ADM), and adrenomedullin 2 (ADM2) family peptides are important neuropeptides and hormones for the regulation of neurotransmission, vasotone, cardiovascular morphogenesis, vascular integrity, and feto‒placental development. These peptides signal through CLR/RAMP1, 2 and 3 recep...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 5; p. e0216996
Main Authors Chang, Chia Lin, Hsu, Sheau Yu Teddy
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.05.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0216996

Cover

Loading…
More Information
Summary:CGRP, adrenomedullin (ADM), and adrenomedullin 2 (ADM2) family peptides are important neuropeptides and hormones for the regulation of neurotransmission, vasotone, cardiovascular morphogenesis, vascular integrity, and feto‒placental development. These peptides signal through CLR/RAMP1, 2 and 3 receptor complexes. CLR/RAMP1, or CGRP receptor, antagonists have been developed for the treatment of migraine headache and osteoarthritis pain; whereas CLR/RAMP2, or ADM receptor, antagonists are being developed for the treatment of tumor growth/metastasis. Based on the finding that an acylated chimeric ADM/ADM2 analog potently stimulates CLR/RAMP1 and 2 signaling, we hypothesized that the binding domain of this analog could have potent inhibitory activity on CLR/RAMP receptors. Consistent with this hypothesis, we showed that acylated truncated ADM/ADM2 analogs of 27-31 residues exhibit potent antagonistic activity toward CLR/RAMP1 and 2. On the other hand, nonacylated analogs have minimal activity. Further truncation at the junctional region of these chimeric analogs led to the generation of CLR/RAMP1-selective antagonists. A 17-amino-acid analog (Antagonist 2-4) showed 100-fold selectivity for CLR/RAMP1 and was >100-fold more potent than the classic CGRP receptor antagonist CGRP8-37. In addition, we showed (1) a lysine residue in the Antagonist 2-4 is important for enhancing the antagonistic activity, (2) an analog consisted of an ADM sequence motif and a 12-amino-acid binding domain of CGRP exhibits potent CLR/RAMP1-inhibitory activity, and (3) a chimeric analog consisted of a somatostatin analog and an ADM antagonist exhibits dual activities on somatostatin and CLR/RAMP receptors. Because the blockage of CLR/RAMP signaling prevents migraine pain and suppresses tumor growth/metastasis, further studies of these analogs, which presumably have better access to the tumor microenvironment and nerve endings at the trigeminal ganglion and synovial joints as compared to antibody-based therapies, may lead to the development of better anti-CGRP therapy and alternative antiangiogenesis therapy. Likewise, the use of bifunctional somatostatin-ADM antagonist analogs could be a promising strategy for the treatment of high-grade neuroendocrine tumors by targeting an antiangiogenesis agent to the neuroendocrine tumor microenvironment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The author (SYTH) has pending patent applications (U.S. Application Serial No. 16/066,609, Peptide analogs) with regard to the use of agonistic and antagonistic analogs described here. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0216996