Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing

High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic species, which could p...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology for biofuels Vol. 10; no. 1; p. 118
Main Authors Xin, Fengxue, Chen, Tianpeng, Jiang, Yujiang, Dong, Weiliang, Zhang, Wenming, Zhang, Min, Wu, Hao, Ma, Jiangfeng, Jiang, Min
Format Journal Article
LanguageEnglish
Published England BioMed Central 08.05.2017
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. A novel wild-type sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. The co-production of isopropanol with butanol by the newly isolated sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production.
AbstractList BACKGROUND: High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone–butanol–ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. RESULTS: A novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone–isopropanol–butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol–butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. CONCLUSION: The co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol–isopropanol in large scale. Meanwhile, its direct production of butanol–isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production.
High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. A novel wild-type sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. The co-production of isopropanol with butanol by the newly isolated sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production.
Abstract Background High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone–butanol–ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. Results A novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone–isopropanol–butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol–butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. Conclusion The co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol–isopropanol in large scale. Meanwhile, its direct production of butanol–isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production.
High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing.BACKGROUNDHigh cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing.A novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose.RESULTSA novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose.The co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production.CONCLUSIONThe co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production.
ArticleNumber 118
Author Dong, Weiliang
Zhang, Wenming
Wu, Hao
Jiang, Min
Chen, Tianpeng
Jiang, Yujiang
Xin, Fengxue
Ma, Jiangfeng
Zhang, Min
Author_xml – sequence: 1
  givenname: Fengxue
  surname: Xin
  fullname: Xin, Fengxue
– sequence: 2
  givenname: Tianpeng
  surname: Chen
  fullname: Chen, Tianpeng
– sequence: 3
  givenname: Yujiang
  surname: Jiang
  fullname: Jiang, Yujiang
– sequence: 4
  givenname: Weiliang
  surname: Dong
  fullname: Dong, Weiliang
– sequence: 5
  givenname: Wenming
  surname: Zhang
  fullname: Zhang, Wenming
– sequence: 6
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
– sequence: 7
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
– sequence: 8
  givenname: Jiangfeng
  surname: Ma
  fullname: Ma, Jiangfeng
– sequence: 9
  givenname: Min
  surname: Jiang
  fullname: Jiang, Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28503195$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1TAQjVARfcAHsEGW2LAJ2Ekc2xskdMWjUiUWwNryY5LrK8e-2Eml7voN8Id8CQ63RW0lxMpH4zNnRmfOaXUUYoCqek7wa0J4_yaTFve8xoTVmGNak0fVCWG0q3vedkd38HF1mvMO454wzJ5Uxw2nuCWCnlQ_vsxJzTA6yGiICblpn-IlWORyLGivQvS_rn_qZV4RKiW7mNnFgPQVUmjjY56Ts26ZUAHKBTSkOKHRLyZmQCpYtIXJGfB-8Wtl3qa4jFtkYsjRO1uGW6TdOsxAzi6MT6vHg_IZnt28Z9W3D--_bj7VF58_nm_eXdSGNv1ctxrDQDrATPctG1SvtGqVVSBwy43oseWaNIaSRgBoTTQZGBM9t6zDnRqgPavOD7o2qp3cJzepdCWjcvJPIaZRqjQ740EKBkBB06HFqiuYQ0MHSzrDeWc6q4rW24PWftETWAOhmOHvid7_CW4rx3gpadeQcoki8OpGIMXvC-RZTi6vrqkAccmywRhT0QvK_kslXAiCOetIob58QN3FJYXiqiQCFxspF31hvbi7_N-tb1NSCOxAMCnmnGCQxs1qTcF6ci8Jlmse5SGPsuRRrnmU6wLkQeet-L97fgMaD-iF
CitedBy_id crossref_primary_10_1016_j_seppur_2021_120166
crossref_primary_10_1128_AEM_00189_19
crossref_primary_10_1134_S0965544118110014
crossref_primary_10_1007_s13399_021_01948_2
crossref_primary_10_1186_s13068_018_1044_9
crossref_primary_10_1016_j_biotechadv_2019_107500
crossref_primary_10_1186_s13068_018_1252_3
crossref_primary_10_1007_s12155_019_10016_7
crossref_primary_10_1016_j_cej_2022_139225
crossref_primary_10_3390_agriculture11010075
crossref_primary_10_1111_1751_7915_14148
crossref_primary_10_1089_ind_2019_0002
crossref_primary_10_1007_s00284_018_1481_5
crossref_primary_10_1111_pai_13570
crossref_primary_10_1016_j_tibtech_2018_08_007
crossref_primary_10_1186_s13068_018_1153_5
crossref_primary_10_1186_s13068_018_1325_3
crossref_primary_10_1021_acs_jafc_8b04754
crossref_primary_10_1002_bit_27464
crossref_primary_10_1007_s13205_019_1598_7
crossref_primary_10_1016_j_psep_2024_06_024
crossref_primary_10_1007_s00253_020_10882_8
crossref_primary_10_1016_j_cej_2023_148408
crossref_primary_10_1515_revce_2017_0041
crossref_primary_10_1007_s00284_017_1380_1
crossref_primary_10_1016_j_biortech_2019_121425
crossref_primary_10_1016_j_mec_2020_e00137
crossref_primary_10_1016_j_biortech_2021_126313
crossref_primary_10_1016_j_anifeedsci_2022_115254
crossref_primary_10_1016_j_biortech_2019_121965
crossref_primary_10_1016_j_tibtech_2020_11_016
crossref_primary_10_1186_s13068_020_01674_3
crossref_primary_10_1007_s12649_021_01542_7
crossref_primary_10_1016_j_ijhydene_2018_01_016
crossref_primary_10_1016_j_procbio_2018_01_013
crossref_primary_10_1080_07388551_2017_1376309
crossref_primary_10_1021_acs_energyfuels_9b04489
crossref_primary_10_1007_s00253_018_8970_0
crossref_primary_10_1016_j_carbpol_2018_01_051
crossref_primary_10_1002_er_5468
crossref_primary_10_1016_j_biombioe_2019_105292
crossref_primary_10_5937_jpea24_29524
Cites_doi 10.1007/BF00132170
10.1002/biot.201100046
10.1128/AEM.48.6.1166-1170.1984
10.1002/14356007.a22_173
10.1038/sj.jim.7000123
10.1093/nar/25.24.4876
10.1016/j.ymben.2015.07.001
10.1007/s12155-012-9226-y
10.1002/bit.22003
10.1016/j.ymben.2015.09.001
10.1007/BF01040869
10.1007/s00253-011-3322-3
10.1128/AEM.06382-11
10.1128/AEM.01140-07
10.1007/BF00286322
10.1128/AEM.65.2.499-505.1999
10.1186/1471-2164-13-102
10.1128/AEM.53.4.697-703.1987
10.1128/AEM.45.3.1160-1163.1983
10.1128/AEM.00706-11
10.1186/s13068-016-0641-8
10.1007/s11274-013-1269-5
10.1016/0168-1656(92)90074-J
10.1128/JB.183.16.4823-4838.2001
10.1021/ac60147a030
10.1016/j.biotechadv.2014.10.009
10.1016/S0065-2164(08)70225-9
10.1007/s002530100704
10.1093/bib/5.2.150
10.1128/AEM.02454-10
ContentType Journal Article
Copyright Copyright BioMed Central 2017
The Author(s) 2017
Copyright_xml – notice: Copyright BioMed Central 2017
– notice: The Author(s) 2017
DBID AAYXX
CITATION
NPM
3V.
7QO
7SP
7ST
7TB
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
L7M
LK8
M0S
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
SOI
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13068-017-0805-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
Proquest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1754-6834
2731-3654
EndPage 118
ExternalDocumentID oai_doaj_org_article_97ee5eb5f30a47ee8e25fd14c884c4da
PMC5421319
28503195
10_1186_s13068_017_0805_1
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: BK20140940
– fundername: ;
  grantid: 2012FY112900; 2013AA065805
GroupedDBID 23N
2WC
2XV
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBS
ECGQY
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HMCUK
HYE
I-F
IAG
IAO
IEA
IEP
ISR
ITC
KQ8
L6V
L8X
LK8
M48
M7P
M7S
ML0
M~E
O5R
O5S
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RBZ
RNS
ROL
RPM
RVI
SCM
TR2
TUS
UKHRP
~8M
-A0
2VQ
3V.
4.4
ADINQ
AHSBF
BMC
C1A
C24
C6C
IHR
IPNFZ
NPM
OK1
RIG
RSV
SOJ
0R~
7QO
7SP
7ST
7TB
7XB
8FD
8FK
AAJSJ
AASML
ADUKV
AZQEC
C1K
DWQXO
EBLON
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
SOI
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c526t-3b0ef14e07b637fa6aba3adae9038c960d8b12c5129eebb1b1f77968d7404afe3
IEDL.DBID M48
ISSN 1754-6834
IngestDate Wed Aug 27 01:28:20 EDT 2025
Thu Aug 21 18:43:12 EDT 2025
Fri Jul 11 05:00:03 EDT 2025
Fri Jul 11 16:34:08 EDT 2025
Sat Aug 23 12:41:36 EDT 2025
Thu Jan 02 22:26:48 EST 2025
Tue Jul 01 04:18:48 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Clostridium sp
Polysaccharides
Xylanase
Butanol
In situ extraction
Temperature shift
Consolidated bioprocessing
Isopropanol
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-3b0ef14e07b637fa6aba3adae9038c960d8b12c5129eebb1b1f77968d7404afe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1905265896?pq-origsite=%requestingapplication%
PMID 28503195
PQID 1905265896
PQPubID 55236
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_97ee5eb5f30a47ee8e25fd14c884c4da
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5421319
proquest_miscellaneous_2000596957
proquest_miscellaneous_1899108741
proquest_journals_1905265896
pubmed_primary_28503195
crossref_citationtrail_10_1186_s13068_017_0805_1
crossref_primary_10_1186_s13068_017_0805_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-08
PublicationDateYYYYMMDD 2017-05-08
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-08
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Biotechnology for biofuels
PublicationTitleAlternate Biotechnol Biofuels
PublicationYear 2017
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References Y Wang (805_CR19) 2012; 13
YH Zhang (805_CR2) 2015; 33
ZR Ng (805_CR10) 2013; 29
J Lee (805_CR4) 2011; 78
805_CR21
Y Gu (805_CR3) 2011; 11
T Hanai (805_CR6) 2007; 73
T Maniatis (805_CR27) 1982
J Zhang (805_CR12) 2013; 6
GL Miller (805_CR34) 1959; 31
P Dürre (805_CR31) 1987; 26
N Qureshi (805_CR11) 2001; 27
E Petitdemange (805_CR20) 1983; 5
MJ Bailey (805_CR33) 1992; 23
SY Lee (805_CR1) 2008; 101
Q Beg (805_CR14) 2001; 56
JS Chen (805_CR17) 1986; 8
XR Yang (805_CR25) 2015; 32
SF Hiu (805_CR32) 1987; 53
N Saitou (805_CR29) 1987; 4
CK Chen (805_CR15) 1999; 65
W Higashide (805_CR23) 2011; 77
SA Survase (805_CR8) 2011; 91
J Nölling (805_CR18) 2001; 183
PP Lin (805_CR24) 2015; 31
S Nakayama (805_CR22) 2011; 77
RA Holt (805_CR16) 1984; 48
F Xin (805_CR26) 2016; 9
JD Thompson (805_CR28) 1997; 25
S Kumar (805_CR30) 2004; 5
P Bajpai (805_CR13) 1997; 43
805_CR5
805_CR7
R Shaheen (805_CR9) 2000; 2
22433311 - BMC Genomics. 2012 Mar 20;13:102
23361972 - World J Microbiol Biotechnol. 2013 Jun;29(6):1059-65
11781804 - J Ind Microbiol Biotechnol. 2001 Nov;27(5):292-7
9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82
15260895 - Brief Bioinform. 2004 Jun;5(2):150-63
3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25
11466286 - J Bacteriol. 2001 Aug;183(16):4823-38
16347317 - Appl Environ Microbiol. 1987 Apr;53(4):697-703
9097414 - Adv Appl Microbiol. 1997;43:141-94
21764954 - Appl Environ Microbiol. 2011 Sep;77(18):6470-5
25447781 - Biotechnol Adv. 2015 Nov 15;33(7):1467-83
10937496 - J Mol Microbiol Biotechnol. 2000 Jan;2(1):115-24
18727018 - Biotechnol Bioeng. 2008 Oct 1;101(2):209-28
16346237 - Appl Environ Microbiol. 1983 Mar;45(3):1160-3
22210214 - Appl Environ Microbiol. 2012 Mar;78(5):1416-23
9925574 - Appl Environ Microbiol. 1999 Feb;65(2):499-505
27777622 - Biotechnol Biofuels. 2016 Oct 18;9:220
26170002 - Metab Eng. 2015 Sep;31:44-52
11548999 - Appl Microbiol Biotechnol. 2001 Aug;56(3-4):326-38
22076745 - Biotechnol J. 2011 Nov;6(11):1348-57
16346678 - Appl Environ Microbiol. 1984 Dec;48(6):1166-70
21378054 - Appl Environ Microbiol. 2011 Apr;77(8):2727-33
17933911 - Appl Environ Microbiol. 2007 Dec;73(24):7814-8
26365585 - Metab Eng. 2015 Nov;32:39-48
21573939 - Appl Microbiol Biotechnol. 2011 Sep;91(5):1305-13
References_xml – volume: 5
  start-page: 119
  year: 1983
  ident: 805_CR20
  publication-title: Biotechnol Lett
  doi: 10.1007/BF00132170
– volume: 11
  start-page: 1348
  year: 2011
  ident: 805_CR3
  publication-title: Biotechnol J
  doi: 10.1002/biot.201100046
– volume: 48
  start-page: 1166
  year: 1984
  ident: 805_CR16
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.48.6.1166-1170.1984
– ident: 805_CR5
  doi: 10.1002/14356007.a22_173
– volume: 27
  start-page: 292
  year: 2001
  ident: 805_CR11
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1038/sj.jim.7000123
– volume: 25
  start-page: 4876
  year: 1997
  ident: 805_CR28
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.24.4876
– volume: 31
  start-page: 44
  year: 2015
  ident: 805_CR24
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2015.07.001
– volume: 6
  start-page: 35
  year: 2013
  ident: 805_CR12
  publication-title: Bioenerg Res.
  doi: 10.1007/s12155-012-9226-y
– volume: 101
  start-page: 209
  year: 2008
  ident: 805_CR1
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22003
– volume: 32
  start-page: 39
  year: 2015
  ident: 805_CR25
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2015.09.001
– volume: 8
  start-page: 371
  year: 1986
  ident: 805_CR17
  publication-title: Biotechnol Lett
  doi: 10.1007/BF01040869
– volume: 91
  start-page: 1305
  year: 2011
  ident: 805_CR8
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-011-3322-3
– volume: 78
  start-page: 1416
  year: 2011
  ident: 805_CR4
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.06382-11
– volume: 73
  start-page: 7814
  year: 2007
  ident: 805_CR6
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01140-07
– volume: 26
  start-page: 268
  year: 1987
  ident: 805_CR31
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/BF00286322
– volume-title: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory
  year: 1982
  ident: 805_CR27
– volume: 65
  start-page: 499
  year: 1999
  ident: 805_CR15
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.2.499-505.1999
– volume: 13
  start-page: 102
  year: 2012
  ident: 805_CR19
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-13-102
– ident: 805_CR21
– volume: 53
  start-page: 697
  year: 1987
  ident: 805_CR32
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.53.4.697-703.1987
– ident: 805_CR7
  doi: 10.1128/AEM.45.3.1160-1163.1983
– volume: 77
  start-page: 6470
  year: 2011
  ident: 805_CR22
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00706-11
– volume: 9
  start-page: 220
  year: 2016
  ident: 805_CR26
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-016-0641-8
– volume: 29
  start-page: 1059
  year: 2013
  ident: 805_CR10
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-013-1269-5
– volume: 2
  start-page: 115
  year: 2000
  ident: 805_CR9
  publication-title: J Mol Microbiol Biotechnol
– volume: 23
  start-page: 257
  year: 1992
  ident: 805_CR33
  publication-title: J Biotechnol
  doi: 10.1016/0168-1656(92)90074-J
– volume: 183
  start-page: 4823
  year: 2001
  ident: 805_CR18
  publication-title: J Bacteriol
  doi: 10.1128/JB.183.16.4823-4838.2001
– volume: 31
  start-page: 426
  year: 1959
  ident: 805_CR34
  publication-title: Anal Chem
  doi: 10.1021/ac60147a030
– volume: 4
  start-page: 406
  year: 1987
  ident: 805_CR29
  publication-title: Mol Biol Evol
– volume: 33
  start-page: 1467
  year: 2015
  ident: 805_CR2
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2014.10.009
– volume: 43
  start-page: 141
  year: 1997
  ident: 805_CR13
  publication-title: Adv Appl Microbiol
  doi: 10.1016/S0065-2164(08)70225-9
– volume: 56
  start-page: 326
  year: 2001
  ident: 805_CR14
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530100704
– volume: 5
  start-page: 150
  year: 2004
  ident: 805_CR30
  publication-title: Briefi Bioinforms.
  doi: 10.1093/bib/5.2.150
– volume: 77
  start-page: 2727
  year: 2011
  ident: 805_CR23
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02454-10
– reference: 27777622 - Biotechnol Biofuels. 2016 Oct 18;9:220
– reference: 22076745 - Biotechnol J. 2011 Nov;6(11):1348-57
– reference: 11548999 - Appl Microbiol Biotechnol. 2001 Aug;56(3-4):326-38
– reference: 21378054 - Appl Environ Microbiol. 2011 Apr;77(8):2727-33
– reference: 16346678 - Appl Environ Microbiol. 1984 Dec;48(6):1166-70
– reference: 22433311 - BMC Genomics. 2012 Mar 20;13:102
– reference: 16347317 - Appl Environ Microbiol. 1987 Apr;53(4):697-703
– reference: 23361972 - World J Microbiol Biotechnol. 2013 Jun;29(6):1059-65
– reference: 10937496 - J Mol Microbiol Biotechnol. 2000 Jan;2(1):115-24
– reference: 15260895 - Brief Bioinform. 2004 Jun;5(2):150-63
– reference: 17933911 - Appl Environ Microbiol. 2007 Dec;73(24):7814-8
– reference: 22210214 - Appl Environ Microbiol. 2012 Mar;78(5):1416-23
– reference: 9925574 - Appl Environ Microbiol. 1999 Feb;65(2):499-505
– reference: 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25
– reference: 21573939 - Appl Microbiol Biotechnol. 2011 Sep;91(5):1305-13
– reference: 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82
– reference: 16346237 - Appl Environ Microbiol. 1983 Mar;45(3):1160-3
– reference: 21764954 - Appl Environ Microbiol. 2011 Sep;77(18):6470-5
– reference: 9097414 - Adv Appl Microbiol. 1997;43:141-94
– reference: 18727018 - Biotechnol Bioeng. 2008 Oct 1;101(2):209-28
– reference: 11466286 - J Bacteriol. 2001 Aug;183(16):4823-38
– reference: 25447781 - Biotechnol Adv. 2015 Nov 15;33(7):1467-83
– reference: 26365585 - Metab Eng. 2015 Nov;32:39-48
– reference: 26170002 - Metab Eng. 2015 Sep;31:44-52
– reference: 11781804 - J Ind Microbiol Biotechnol. 2001 Nov;27(5):292-7
SSID ssj0061707
ssj0002769473
Score 2.357323
Snippet High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the...
Background High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation...
BACKGROUND: High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone–butanol–ethanol (ABE) fermentation...
Abstract Background High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone–butanol–ethanol (ABE)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 118
SubjectTerms Acetone
Acids
Alcohol
Alcohol dehydrogenase
Alcohols
Automobile engines
Bacteria
Batch culture
biodiesel
Biodiesel fuels
Biofuels
Biomass
Bioprocessing
buffering capacity
Buffers
Butanol
byproducts
Cellulase
Cellulose
Clostridium
Clostridium sp
Consolidation
Conversion
Cost engineering
Dehydrogenases
Diesel
economic feasibility
Economics
Enzymes
Ethanol
Extraction
Feasibility
Fermentation
fuel production
Fuels
Genomes
Glucose
Hemicellulose
In situ extraction
Integrated software
Isopropanol
isopropyl alcohol
Laboratories
Lignocellulose
lignocellulosic wastes
Metabolism
Metabolites
Monosaccharides
Phylogenetics
Polysaccharides
Productivity
Saccharides
saccharification
Secretion
Solvents
Substrates
Temperature effects
Temperature shift
thermal stability
value-added products
Wastes
xylanases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQ-q6btKjQU8HEsvU8tiEhFNpTA7kJyRpTg2sv9fqQW39D8g_zSzqSvctu6ePSm9ADJM2M9EkafUPIW-cClLo2uTChyjmvVG6C4PHBseZoW41JdE2fPsuLS_7xSlzthPqKPmEzPfA8cSdGAQjwoqkKxzGtoRRNYLzWmtc8JGiEe97mMDWvwZFlXC1vmEzLkxFXahmdtlSOCEnkbG8XSmT9v0OYvzpK7uw85w_JgwUy0vdzVx-Re9A_Jvd3iASfkJsNySyMFFEobdNVAQTajgOm0OKH7u7HrZ_WMUVXM80rioT6a-roaTfE8B2hnb7RMQWNoPHbCV382anrA03EAtB1UxdzlvA-FE_TqLxtvDYI1LfDav53gJ16Si7Pz76cXuRLtIW8FqVc55UvoGEcCuVlpRonnXeVCw5MUaEwZRG0Z2UdAQKA98yzRikjdVC84K6B6hk56IceXhBahhoXC4ACDAI0ER0WERc0pm4qAzq4jBSb2bf1QkUeB9fZdCTR0s4CsygwGwVmWUbebZusZh6Ov1X-EEW6rRgptFMGKpZdFMv-S7EycrxRCLvY9WgRPsV4AtrIjLzZFqNFRgG4HoYJ6-ARlhUaodqf65SJGEcaoTLyfNaxbW9LLeLXMpERtad9e8PZL-nbr4kZXPCSYdOX_2P8R-SwTAYj0GaOycH6-wSvEICt_etkaz8B-Tg1EQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHKAHBOW1UJCROCFFzcPPE4KKqkKCE5X2FtnxBCKFZGl2D_0X_GRmHO_SRdBTosSRJpmHv4zH3zD2xrkApWlsJm2oMiEqndkgBS04NgJ9q7WRrunzF3V-IT4t5TIl3KZUVrmNiTFQh7GhHPkJTlzE5G6serf6mVHXKFpdTS00brM7RF1GVq2XepdjKbWyQldpMbMw6mTCkK2oektnCJVkVuxNR5G1_19Q8--KyWtT0NkDdj9hR_5-VvZDdguGI3Z3u7V4OmKH19gFH7FfW-ZZmDhCU97F_AEE3k0jnmEYGPvMb9Z05KuZ-RW1xP0Vd_y0H6mjR-g2P_gU-0hw2onCU4k7d0PgkWsA-n7T05XU8YejOGjPHWUSAvfduJq3IqBIj9nF2cevp-dZasCQNfit11nlc2gLAbn2qtKtU867ygUHNq9QvyoPxhdlQ5gBwPvCF63WVpmgRS5cC9UTdjCMAzxjvAwNxg-AHCxiNkk1jAgVWtu0lQUT3ILlWz3UTWInp5fr6_iXYlQ9q65G1dWkurpYsLe7R1YzNcdNgz-QcncDiVU7Xhgvv9XJSWurASR42Va5E3huoJRtKERjjGgECXm8NY06ufpU_zHMBXu9u41OSgpwA4wbHIN_tUVuEL39f0wZuXKUlXrBns7WtpO2NJJ2m8kF03t2uPc6-3eG7nskC5eiLPDR5zeL_oLdK6NTSPSLY3awvtzAS0Rba_8qutRvCR8t6Q
  priority: 102
  providerName: ProQuest
Title Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing
URI https://www.ncbi.nlm.nih.gov/pubmed/28503195
https://www.proquest.com/docview/1905265896
https://www.proquest.com/docview/1899108741
https://www.proquest.com/docview/2000596957
https://pubmed.ncbi.nlm.nih.gov/PMC5421319
https://doaj.org/article/97ee5eb5f30a47ee8e25fd14c884c4da
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe4ED4s1CWRmJE1IgDz8PCG2rlmqlVghYaW-RHU8gUkiWfUj0X_CTGTvJqou2XJIodizHM2N_48c3hLwxxkGqCh1x7bKIsUxG2nHmFxwLhrZV6kDXdHklLmZsOufzAzKEt-obcLXXtfPxpGbL-t3vX9cf0eA_BINX4v0K-2Hht2TJCPEPj9AZOsKBSfqABpdsu6jgqcdDrBWJdREqY_0i594iPEmw4v6ID98ZsQKx_z40-u-myhuj1PkDcr-Hl3TS6cNDcgDNI3LvBungY_JnIKSFFUXESqswrQCOVqsWn7B3aOvIbtb-ThcdISwKj9prauhp3fpAH67a_KSrEF6C-gMqtN_5Tk3jaKAggLre1P5NHwiIot-Nal75CQZHbdUuuhMKWKUnZHZ-9u30IurjMkQFT8U6ymwMZcIgllZksjTCWJMZZ0DHGYpdxE7ZJC08lACwNrFJKaUWykkWM1NC9pQcNm0DzwlNXYHdCkAMGqEc91sbEUGUuigzDcqZEYmHts-LnrTc_1ydB-dFibyTXI6Sy73k8mRE3m4_WXSMHf_LfOIFus3oybbDi3b5Pe9tN9cSgIPlZRYbhs8KUl66hBVKsYL5Sh4P6pAPCpwj0PKRB5QWI_J6m4y26wVgGmg3mAed3SRWCOpuz5MGCh2huRyRZ52GbWs7aOiIyB3d2_md3ZSm-hE4xDlLE_z0xa1lviR302AOHC3imByulxt4hfhrbcfkjpxLvKrzT2NyNJlMv07xfnJ29fnLOMxpjIPd_QXtZDQH
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCMproYCR4IIUNYnt2D4gBIWypY9TK_UW7HgCkUKyNLtC_Rf8En4jYydZugh66ylR4kRjzdP2zDeEvDDGQaoKHQntWMQ5k5F2gvsDx4KjbpU6wDUdHmXTE_7pVJyukV9jLYxPqxxtYjDUri38Hvk2Oi6P5K509mb2PfJdo_zp6thCoxeLfTj_gUu27vXee-TvyzTd_XC8M42GrgJRgT-YR8zGUCYcYmkzJkuTGWuYcQZ0zJDoLHbKJmnhHSGAtYlNSil1ppzkMTclMPzvNXKdM_TkvjJ99-NyTyeVmeaSDYenicq2O3QRmc8WkxGGZiJKVtxf6BLwr9D27wzNCy5v9za5NcSq9G0vXHfIGjSbZGMsZe42yc0LaIZ3yc8R6RY6iqEwrcJ-BThadS3eodlp68gu5v5KZz3SLEoFtefU0J269R1EXLX4RrvQt4L6yhc6pNRT0zgasA2grhe1fzJ0GKJIDupP5XcuHLVVO-tLH5Cke-TkSlhzn6w3bQMPCU1dgfYKIAaNMaLwOZMYmpS6KJkG5cyExCMf8mJAQ_eTq_OwKlJZ3rMuR9blnnV5MiGvlp_MeiiQywa_88xdDvQo3uFBe_YlH4xCriWAACtKFhuO9wpSUbqEF0rxgnsit0bRyAfT0uV_FGFCni9fo1HwDDANtAscg6voJFYYLf5_TBqweTIt5IQ86KVtSW2qhK9uExMiV-RwZTqrb5rqawAnFzxN8NNHl5P-jGxMjw8P8oO9o_3H5EYaFESgjmyR9fnZAp5gpDe3T4N6UfL5qvX5N4dka_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+for+improved+isopropanol-butanol+production+by+a+Clostridium+strain+from+glucose+and+hemicellulose+through+consolidated+bioprocessing&rft.jtitle=Biotechnology+for+biofuels&rft.au=Xin%2C+Fengxue&rft.au=Chen%2C+Tianpeng&rft.au=Jiang%2C+Yujiang&rft.au=Dong%2C+Weiliang&rft.date=2017-05-08&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=10&rft.spage=118&rft_id=info:doi/10.1186%2Fs13068-017-0805-1&rft_id=info%3Apmid%2F28503195&rft.externalDocID=28503195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon