Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing
High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic species, which could p...
Saved in:
Published in | Biotechnology for biofuels Vol. 10; no. 1; p. 118 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
08.05.2017
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic
species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing.
A novel wild-type
sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by
sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile,
sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose.
The co-production of isopropanol with butanol by the newly isolated
sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production. |
---|---|
AbstractList | BACKGROUND: High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone–butanol–ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. RESULTS: A novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone–isopropanol–butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol–butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. CONCLUSION: The co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol–isopropanol in large scale. Meanwhile, its direct production of butanol–isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production. High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. A novel wild-type sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. The co-production of isopropanol with butanol by the newly isolated sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production. Abstract Background High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone–butanol–ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. Results A novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone–isopropanol–butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol–butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. Conclusion The co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol–isopropanol in large scale. Meanwhile, its direct production of butanol–isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production. High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing.BACKGROUNDHigh cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing.A novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose.RESULTSA novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose.The co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production.CONCLUSIONThe co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production. |
ArticleNumber | 118 |
Author | Dong, Weiliang Zhang, Wenming Wu, Hao Jiang, Min Chen, Tianpeng Jiang, Yujiang Xin, Fengxue Ma, Jiangfeng Zhang, Min |
Author_xml | – sequence: 1 givenname: Fengxue surname: Xin fullname: Xin, Fengxue – sequence: 2 givenname: Tianpeng surname: Chen fullname: Chen, Tianpeng – sequence: 3 givenname: Yujiang surname: Jiang fullname: Jiang, Yujiang – sequence: 4 givenname: Weiliang surname: Dong fullname: Dong, Weiliang – sequence: 5 givenname: Wenming surname: Zhang fullname: Zhang, Wenming – sequence: 6 givenname: Min surname: Zhang fullname: Zhang, Min – sequence: 7 givenname: Hao surname: Wu fullname: Wu, Hao – sequence: 8 givenname: Jiangfeng surname: Ma fullname: Ma, Jiangfeng – sequence: 9 givenname: Min surname: Jiang fullname: Jiang, Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28503195$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1TAQjVARfcAHsEGW2LAJ2Ekc2xskdMWjUiUWwNryY5LrK8e-2Eml7voN8Id8CQ63RW0lxMpH4zNnRmfOaXUUYoCqek7wa0J4_yaTFve8xoTVmGNak0fVCWG0q3vedkd38HF1mvMO454wzJ5Uxw2nuCWCnlQ_vsxJzTA6yGiICblpn-IlWORyLGivQvS_rn_qZV4RKiW7mNnFgPQVUmjjY56Ts26ZUAHKBTSkOKHRLyZmQCpYtIXJGfB-8Wtl3qa4jFtkYsjRO1uGW6TdOsxAzi6MT6vHg_IZnt28Z9W3D--_bj7VF58_nm_eXdSGNv1ctxrDQDrATPctG1SvtGqVVSBwy43oseWaNIaSRgBoTTQZGBM9t6zDnRqgPavOD7o2qp3cJzepdCWjcvJPIaZRqjQ740EKBkBB06HFqiuYQ0MHSzrDeWc6q4rW24PWftETWAOhmOHvid7_CW4rx3gpadeQcoki8OpGIMXvC-RZTi6vrqkAccmywRhT0QvK_kslXAiCOetIob58QN3FJYXiqiQCFxspF31hvbi7_N-tb1NSCOxAMCnmnGCQxs1qTcF6ci8Jlmse5SGPsuRRrnmU6wLkQeet-L97fgMaD-iF |
CitedBy_id | crossref_primary_10_1016_j_seppur_2021_120166 crossref_primary_10_1128_AEM_00189_19 crossref_primary_10_1134_S0965544118110014 crossref_primary_10_1007_s13399_021_01948_2 crossref_primary_10_1186_s13068_018_1044_9 crossref_primary_10_1016_j_biotechadv_2019_107500 crossref_primary_10_1186_s13068_018_1252_3 crossref_primary_10_1007_s12155_019_10016_7 crossref_primary_10_1016_j_cej_2022_139225 crossref_primary_10_3390_agriculture11010075 crossref_primary_10_1111_1751_7915_14148 crossref_primary_10_1089_ind_2019_0002 crossref_primary_10_1007_s00284_018_1481_5 crossref_primary_10_1111_pai_13570 crossref_primary_10_1016_j_tibtech_2018_08_007 crossref_primary_10_1186_s13068_018_1153_5 crossref_primary_10_1186_s13068_018_1325_3 crossref_primary_10_1021_acs_jafc_8b04754 crossref_primary_10_1002_bit_27464 crossref_primary_10_1007_s13205_019_1598_7 crossref_primary_10_1016_j_psep_2024_06_024 crossref_primary_10_1007_s00253_020_10882_8 crossref_primary_10_1016_j_cej_2023_148408 crossref_primary_10_1515_revce_2017_0041 crossref_primary_10_1007_s00284_017_1380_1 crossref_primary_10_1016_j_biortech_2019_121425 crossref_primary_10_1016_j_mec_2020_e00137 crossref_primary_10_1016_j_biortech_2021_126313 crossref_primary_10_1016_j_anifeedsci_2022_115254 crossref_primary_10_1016_j_biortech_2019_121965 crossref_primary_10_1016_j_tibtech_2020_11_016 crossref_primary_10_1186_s13068_020_01674_3 crossref_primary_10_1007_s12649_021_01542_7 crossref_primary_10_1016_j_ijhydene_2018_01_016 crossref_primary_10_1016_j_procbio_2018_01_013 crossref_primary_10_1080_07388551_2017_1376309 crossref_primary_10_1021_acs_energyfuels_9b04489 crossref_primary_10_1007_s00253_018_8970_0 crossref_primary_10_1016_j_carbpol_2018_01_051 crossref_primary_10_1002_er_5468 crossref_primary_10_1016_j_biombioe_2019_105292 crossref_primary_10_5937_jpea24_29524 |
Cites_doi | 10.1007/BF00132170 10.1002/biot.201100046 10.1128/AEM.48.6.1166-1170.1984 10.1002/14356007.a22_173 10.1038/sj.jim.7000123 10.1093/nar/25.24.4876 10.1016/j.ymben.2015.07.001 10.1007/s12155-012-9226-y 10.1002/bit.22003 10.1016/j.ymben.2015.09.001 10.1007/BF01040869 10.1007/s00253-011-3322-3 10.1128/AEM.06382-11 10.1128/AEM.01140-07 10.1007/BF00286322 10.1128/AEM.65.2.499-505.1999 10.1186/1471-2164-13-102 10.1128/AEM.53.4.697-703.1987 10.1128/AEM.45.3.1160-1163.1983 10.1128/AEM.00706-11 10.1186/s13068-016-0641-8 10.1007/s11274-013-1269-5 10.1016/0168-1656(92)90074-J 10.1128/JB.183.16.4823-4838.2001 10.1021/ac60147a030 10.1016/j.biotechadv.2014.10.009 10.1016/S0065-2164(08)70225-9 10.1007/s002530100704 10.1093/bib/5.2.150 10.1128/AEM.02454-10 |
ContentType | Journal Article |
Copyright | Copyright BioMed Central 2017 The Author(s) 2017 |
Copyright_xml | – notice: Copyright BioMed Central 2017 – notice: The Author(s) 2017 |
DBID | AAYXX CITATION NPM 3V. 7QO 7SP 7ST 7TB 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V L7M LK8 M0S M7P M7S P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS SOI 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13068-017-0805-1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection Proquest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Economics |
EISSN | 1754-6834 2731-3654 |
EndPage | 118 |
ExternalDocumentID | oai_doaj_org_article_97ee5eb5f30a47ee8e25fd14c884c4da PMC5421319 28503195 10_1186_s13068_017_0805_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: BK20140940 – fundername: ; grantid: 2012FY112900; 2013AA065805 |
GroupedDBID | 23N 2WC 2XV 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBS ECGQY EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HH5 HMCUK HYE I-F IAG IAO IEA IEP ISR ITC KQ8 L6V L8X LK8 M48 M7P M7S ML0 M~E O5R O5S OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RBZ RNS ROL RPM RVI SCM TR2 TUS UKHRP ~8M -A0 2VQ 3V. 4.4 ADINQ AHSBF BMC C1A C24 C6C IHR IPNFZ NPM OK1 RIG RSV SOJ 0R~ 7QO 7SP 7ST 7TB 7XB 8FD 8FK AAJSJ AASML ADUKV AZQEC C1K DWQXO EBLON FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS SOI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c526t-3b0ef14e07b637fa6aba3adae9038c960d8b12c5129eebb1b1f77968d7404afe3 |
IEDL.DBID | M48 |
ISSN | 1754-6834 |
IngestDate | Wed Aug 27 01:28:20 EDT 2025 Thu Aug 21 18:43:12 EDT 2025 Fri Jul 11 05:00:03 EDT 2025 Fri Jul 11 16:34:08 EDT 2025 Sat Aug 23 12:41:36 EDT 2025 Thu Jan 02 22:26:48 EST 2025 Tue Jul 01 04:18:48 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Clostridium sp Polysaccharides Xylanase Butanol In situ extraction Temperature shift Consolidated bioprocessing Isopropanol |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c526t-3b0ef14e07b637fa6aba3adae9038c960d8b12c5129eebb1b1f77968d7404afe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1905265896?pq-origsite=%requestingapplication% |
PMID | 28503195 |
PQID | 1905265896 |
PQPubID | 55236 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_97ee5eb5f30a47ee8e25fd14c884c4da pubmedcentral_primary_oai_pubmedcentral_nih_gov_5421319 proquest_miscellaneous_2000596957 proquest_miscellaneous_1899108741 proquest_journals_1905265896 pubmed_primary_28503195 crossref_citationtrail_10_1186_s13068_017_0805_1 crossref_primary_10_1186_s13068_017_0805_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-08 |
PublicationDateYYYYMMDD | 2017-05-08 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Biotechnology for biofuels |
PublicationTitleAlternate | Biotechnol Biofuels |
PublicationYear | 2017 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | Y Wang (805_CR19) 2012; 13 YH Zhang (805_CR2) 2015; 33 ZR Ng (805_CR10) 2013; 29 J Lee (805_CR4) 2011; 78 805_CR21 Y Gu (805_CR3) 2011; 11 T Hanai (805_CR6) 2007; 73 T Maniatis (805_CR27) 1982 J Zhang (805_CR12) 2013; 6 GL Miller (805_CR34) 1959; 31 P Dürre (805_CR31) 1987; 26 N Qureshi (805_CR11) 2001; 27 E Petitdemange (805_CR20) 1983; 5 MJ Bailey (805_CR33) 1992; 23 SY Lee (805_CR1) 2008; 101 Q Beg (805_CR14) 2001; 56 JS Chen (805_CR17) 1986; 8 XR Yang (805_CR25) 2015; 32 SF Hiu (805_CR32) 1987; 53 N Saitou (805_CR29) 1987; 4 CK Chen (805_CR15) 1999; 65 W Higashide (805_CR23) 2011; 77 SA Survase (805_CR8) 2011; 91 J Nölling (805_CR18) 2001; 183 PP Lin (805_CR24) 2015; 31 S Nakayama (805_CR22) 2011; 77 RA Holt (805_CR16) 1984; 48 F Xin (805_CR26) 2016; 9 JD Thompson (805_CR28) 1997; 25 S Kumar (805_CR30) 2004; 5 P Bajpai (805_CR13) 1997; 43 805_CR5 805_CR7 R Shaheen (805_CR9) 2000; 2 22433311 - BMC Genomics. 2012 Mar 20;13:102 23361972 - World J Microbiol Biotechnol. 2013 Jun;29(6):1059-65 11781804 - J Ind Microbiol Biotechnol. 2001 Nov;27(5):292-7 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 15260895 - Brief Bioinform. 2004 Jun;5(2):150-63 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 11466286 - J Bacteriol. 2001 Aug;183(16):4823-38 16347317 - Appl Environ Microbiol. 1987 Apr;53(4):697-703 9097414 - Adv Appl Microbiol. 1997;43:141-94 21764954 - Appl Environ Microbiol. 2011 Sep;77(18):6470-5 25447781 - Biotechnol Adv. 2015 Nov 15;33(7):1467-83 10937496 - J Mol Microbiol Biotechnol. 2000 Jan;2(1):115-24 18727018 - Biotechnol Bioeng. 2008 Oct 1;101(2):209-28 16346237 - Appl Environ Microbiol. 1983 Mar;45(3):1160-3 22210214 - Appl Environ Microbiol. 2012 Mar;78(5):1416-23 9925574 - Appl Environ Microbiol. 1999 Feb;65(2):499-505 27777622 - Biotechnol Biofuels. 2016 Oct 18;9:220 26170002 - Metab Eng. 2015 Sep;31:44-52 11548999 - Appl Microbiol Biotechnol. 2001 Aug;56(3-4):326-38 22076745 - Biotechnol J. 2011 Nov;6(11):1348-57 16346678 - Appl Environ Microbiol. 1984 Dec;48(6):1166-70 21378054 - Appl Environ Microbiol. 2011 Apr;77(8):2727-33 17933911 - Appl Environ Microbiol. 2007 Dec;73(24):7814-8 26365585 - Metab Eng. 2015 Nov;32:39-48 21573939 - Appl Microbiol Biotechnol. 2011 Sep;91(5):1305-13 |
References_xml | – volume: 5 start-page: 119 year: 1983 ident: 805_CR20 publication-title: Biotechnol Lett doi: 10.1007/BF00132170 – volume: 11 start-page: 1348 year: 2011 ident: 805_CR3 publication-title: Biotechnol J doi: 10.1002/biot.201100046 – volume: 48 start-page: 1166 year: 1984 ident: 805_CR16 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.48.6.1166-1170.1984 – ident: 805_CR5 doi: 10.1002/14356007.a22_173 – volume: 27 start-page: 292 year: 2001 ident: 805_CR11 publication-title: J Ind Microbiol Biotechnol doi: 10.1038/sj.jim.7000123 – volume: 25 start-page: 4876 year: 1997 ident: 805_CR28 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.24.4876 – volume: 31 start-page: 44 year: 2015 ident: 805_CR24 publication-title: Metab Eng doi: 10.1016/j.ymben.2015.07.001 – volume: 6 start-page: 35 year: 2013 ident: 805_CR12 publication-title: Bioenerg Res. doi: 10.1007/s12155-012-9226-y – volume: 101 start-page: 209 year: 2008 ident: 805_CR1 publication-title: Biotechnol Bioeng doi: 10.1002/bit.22003 – volume: 32 start-page: 39 year: 2015 ident: 805_CR25 publication-title: Metab Eng doi: 10.1016/j.ymben.2015.09.001 – volume: 8 start-page: 371 year: 1986 ident: 805_CR17 publication-title: Biotechnol Lett doi: 10.1007/BF01040869 – volume: 91 start-page: 1305 year: 2011 ident: 805_CR8 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3322-3 – volume: 78 start-page: 1416 year: 2011 ident: 805_CR4 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.06382-11 – volume: 73 start-page: 7814 year: 2007 ident: 805_CR6 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01140-07 – volume: 26 start-page: 268 year: 1987 ident: 805_CR31 publication-title: Appl Microbiol Biotechnol doi: 10.1007/BF00286322 – volume-title: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory year: 1982 ident: 805_CR27 – volume: 65 start-page: 499 year: 1999 ident: 805_CR15 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.65.2.499-505.1999 – volume: 13 start-page: 102 year: 2012 ident: 805_CR19 publication-title: BMC Genom doi: 10.1186/1471-2164-13-102 – ident: 805_CR21 – volume: 53 start-page: 697 year: 1987 ident: 805_CR32 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.53.4.697-703.1987 – ident: 805_CR7 doi: 10.1128/AEM.45.3.1160-1163.1983 – volume: 77 start-page: 6470 year: 2011 ident: 805_CR22 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00706-11 – volume: 9 start-page: 220 year: 2016 ident: 805_CR26 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-016-0641-8 – volume: 29 start-page: 1059 year: 2013 ident: 805_CR10 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-013-1269-5 – volume: 2 start-page: 115 year: 2000 ident: 805_CR9 publication-title: J Mol Microbiol Biotechnol – volume: 23 start-page: 257 year: 1992 ident: 805_CR33 publication-title: J Biotechnol doi: 10.1016/0168-1656(92)90074-J – volume: 183 start-page: 4823 year: 2001 ident: 805_CR18 publication-title: J Bacteriol doi: 10.1128/JB.183.16.4823-4838.2001 – volume: 31 start-page: 426 year: 1959 ident: 805_CR34 publication-title: Anal Chem doi: 10.1021/ac60147a030 – volume: 4 start-page: 406 year: 1987 ident: 805_CR29 publication-title: Mol Biol Evol – volume: 33 start-page: 1467 year: 2015 ident: 805_CR2 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2014.10.009 – volume: 43 start-page: 141 year: 1997 ident: 805_CR13 publication-title: Adv Appl Microbiol doi: 10.1016/S0065-2164(08)70225-9 – volume: 56 start-page: 326 year: 2001 ident: 805_CR14 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s002530100704 – volume: 5 start-page: 150 year: 2004 ident: 805_CR30 publication-title: Briefi Bioinforms. doi: 10.1093/bib/5.2.150 – volume: 77 start-page: 2727 year: 2011 ident: 805_CR23 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02454-10 – reference: 27777622 - Biotechnol Biofuels. 2016 Oct 18;9:220 – reference: 22076745 - Biotechnol J. 2011 Nov;6(11):1348-57 – reference: 11548999 - Appl Microbiol Biotechnol. 2001 Aug;56(3-4):326-38 – reference: 21378054 - Appl Environ Microbiol. 2011 Apr;77(8):2727-33 – reference: 16346678 - Appl Environ Microbiol. 1984 Dec;48(6):1166-70 – reference: 22433311 - BMC Genomics. 2012 Mar 20;13:102 – reference: 16347317 - Appl Environ Microbiol. 1987 Apr;53(4):697-703 – reference: 23361972 - World J Microbiol Biotechnol. 2013 Jun;29(6):1059-65 – reference: 10937496 - J Mol Microbiol Biotechnol. 2000 Jan;2(1):115-24 – reference: 15260895 - Brief Bioinform. 2004 Jun;5(2):150-63 – reference: 17933911 - Appl Environ Microbiol. 2007 Dec;73(24):7814-8 – reference: 22210214 - Appl Environ Microbiol. 2012 Mar;78(5):1416-23 – reference: 9925574 - Appl Environ Microbiol. 1999 Feb;65(2):499-505 – reference: 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 – reference: 21573939 - Appl Microbiol Biotechnol. 2011 Sep;91(5):1305-13 – reference: 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 – reference: 16346237 - Appl Environ Microbiol. 1983 Mar;45(3):1160-3 – reference: 21764954 - Appl Environ Microbiol. 2011 Sep;77(18):6470-5 – reference: 9097414 - Adv Appl Microbiol. 1997;43:141-94 – reference: 18727018 - Biotechnol Bioeng. 2008 Oct 1;101(2):209-28 – reference: 11466286 - J Bacteriol. 2001 Aug;183(16):4823-38 – reference: 25447781 - Biotechnol Adv. 2015 Nov 15;33(7):1467-83 – reference: 26365585 - Metab Eng. 2015 Nov;32:39-48 – reference: 26170002 - Metab Eng. 2015 Sep;31:44-52 – reference: 11781804 - J Ind Microbiol Biotechnol. 2001 Nov;27(5):292-7 |
SSID | ssj0061707 ssj0002769473 |
Score | 2.357323 |
Snippet | High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the... Background High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation... BACKGROUND: High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone–butanol–ethanol (ABE) fermentation... Abstract Background High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone–butanol–ethanol (ABE)... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 118 |
SubjectTerms | Acetone Acids Alcohol Alcohol dehydrogenase Alcohols Automobile engines Bacteria Batch culture biodiesel Biodiesel fuels Biofuels Biomass Bioprocessing buffering capacity Buffers Butanol byproducts Cellulase Cellulose Clostridium Clostridium sp Consolidation Conversion Cost engineering Dehydrogenases Diesel economic feasibility Economics Enzymes Ethanol Extraction Feasibility Fermentation fuel production Fuels Genomes Glucose Hemicellulose In situ extraction Integrated software Isopropanol isopropyl alcohol Laboratories Lignocellulose lignocellulosic wastes Metabolism Metabolites Monosaccharides Phylogenetics Polysaccharides Productivity Saccharides saccharification Secretion Solvents Substrates Temperature effects Temperature shift thermal stability value-added products Wastes xylanases |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQ-q6btKjQU8HEsvU8tiEhFNpTA7kJyRpTg2sv9fqQW39D8g_zSzqSvctu6ePSm9ADJM2M9EkafUPIW-cClLo2uTChyjmvVG6C4PHBseZoW41JdE2fPsuLS_7xSlzthPqKPmEzPfA8cSdGAQjwoqkKxzGtoRRNYLzWmtc8JGiEe97mMDWvwZFlXC1vmEzLkxFXahmdtlSOCEnkbG8XSmT9v0OYvzpK7uw85w_JgwUy0vdzVx-Re9A_Jvd3iASfkJsNySyMFFEobdNVAQTajgOm0OKH7u7HrZ_WMUVXM80rioT6a-roaTfE8B2hnb7RMQWNoPHbCV382anrA03EAtB1UxdzlvA-FE_TqLxtvDYI1LfDav53gJ16Si7Pz76cXuRLtIW8FqVc55UvoGEcCuVlpRonnXeVCw5MUaEwZRG0Z2UdAQKA98yzRikjdVC84K6B6hk56IceXhBahhoXC4ACDAI0ER0WERc0pm4qAzq4jBSb2bf1QkUeB9fZdCTR0s4CsygwGwVmWUbebZusZh6Ov1X-EEW6rRgptFMGKpZdFMv-S7EycrxRCLvY9WgRPsV4AtrIjLzZFqNFRgG4HoYJ6-ARlhUaodqf65SJGEcaoTLyfNaxbW9LLeLXMpERtad9e8PZL-nbr4kZXPCSYdOX_2P8R-SwTAYj0GaOycH6-wSvEICt_etkaz8B-Tg1EQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHKAHBOW1UJCROCFFzcPPE4KKqkKCE5X2FtnxBCKFZGl2D_0X_GRmHO_SRdBTosSRJpmHv4zH3zD2xrkApWlsJm2oMiEqndkgBS04NgJ9q7WRrunzF3V-IT4t5TIl3KZUVrmNiTFQh7GhHPkJTlzE5G6serf6mVHXKFpdTS00brM7RF1GVq2XepdjKbWyQldpMbMw6mTCkK2oektnCJVkVuxNR5G1_19Q8--KyWtT0NkDdj9hR_5-VvZDdguGI3Z3u7V4OmKH19gFH7FfW-ZZmDhCU97F_AEE3k0jnmEYGPvMb9Z05KuZ-RW1xP0Vd_y0H6mjR-g2P_gU-0hw2onCU4k7d0PgkWsA-n7T05XU8YejOGjPHWUSAvfduJq3IqBIj9nF2cevp-dZasCQNfit11nlc2gLAbn2qtKtU867ygUHNq9QvyoPxhdlQ5gBwPvCF63WVpmgRS5cC9UTdjCMAzxjvAwNxg-AHCxiNkk1jAgVWtu0lQUT3ILlWz3UTWInp5fr6_iXYlQ9q65G1dWkurpYsLe7R1YzNcdNgz-QcncDiVU7Xhgvv9XJSWurASR42Va5E3huoJRtKERjjGgECXm8NY06ufpU_zHMBXu9u41OSgpwA4wbHIN_tUVuEL39f0wZuXKUlXrBns7WtpO2NJJ2m8kF03t2uPc6-3eG7nskC5eiLPDR5zeL_oLdK6NTSPSLY3awvtzAS0Rba_8qutRvCR8t6Q priority: 102 providerName: ProQuest |
Title | Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28503195 https://www.proquest.com/docview/1905265896 https://www.proquest.com/docview/1899108741 https://www.proquest.com/docview/2000596957 https://pubmed.ncbi.nlm.nih.gov/PMC5421319 https://doaj.org/article/97ee5eb5f30a47ee8e25fd14c884c4da |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe4ED4s1CWRmJE1IgDz8PCG2rlmqlVghYaW-RHU8gUkiWfUj0X_CTGTvJqou2XJIodizHM2N_48c3hLwxxkGqCh1x7bKIsUxG2nHmFxwLhrZV6kDXdHklLmZsOufzAzKEt-obcLXXtfPxpGbL-t3vX9cf0eA_BINX4v0K-2Hht2TJCPEPj9AZOsKBSfqABpdsu6jgqcdDrBWJdREqY_0i594iPEmw4v6ID98ZsQKx_z40-u-myhuj1PkDcr-Hl3TS6cNDcgDNI3LvBungY_JnIKSFFUXESqswrQCOVqsWn7B3aOvIbtb-ThcdISwKj9prauhp3fpAH67a_KSrEF6C-gMqtN_5Tk3jaKAggLre1P5NHwiIot-Nal75CQZHbdUuuhMKWKUnZHZ-9u30IurjMkQFT8U6ymwMZcIgllZksjTCWJMZZ0DHGYpdxE7ZJC08lACwNrFJKaUWykkWM1NC9pQcNm0DzwlNXYHdCkAMGqEc91sbEUGUuigzDcqZEYmHts-LnrTc_1ydB-dFibyTXI6Sy73k8mRE3m4_WXSMHf_LfOIFus3oybbDi3b5Pe9tN9cSgIPlZRYbhs8KUl66hBVKsYL5Sh4P6pAPCpwj0PKRB5QWI_J6m4y26wVgGmg3mAed3SRWCOpuz5MGCh2huRyRZ52GbWs7aOiIyB3d2_md3ZSm-hE4xDlLE_z0xa1lviR302AOHC3imByulxt4hfhrbcfkjpxLvKrzT2NyNJlMv07xfnJ29fnLOMxpjIPd_QXtZDQH |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCMproYCR4IIUNYnt2D4gBIWypY9TK_UW7HgCkUKyNLtC_Rf8En4jYydZugh66ylR4kRjzdP2zDeEvDDGQaoKHQntWMQ5k5F2gvsDx4KjbpU6wDUdHmXTE_7pVJyukV9jLYxPqxxtYjDUri38Hvk2Oi6P5K509mb2PfJdo_zp6thCoxeLfTj_gUu27vXee-TvyzTd_XC8M42GrgJRgT-YR8zGUCYcYmkzJkuTGWuYcQZ0zJDoLHbKJmnhHSGAtYlNSil1ppzkMTclMPzvNXKdM_TkvjJ99-NyTyeVmeaSDYenicq2O3QRmc8WkxGGZiJKVtxf6BLwr9D27wzNCy5v9za5NcSq9G0vXHfIGjSbZGMsZe42yc0LaIZ3yc8R6RY6iqEwrcJ-BThadS3eodlp68gu5v5KZz3SLEoFtefU0J269R1EXLX4RrvQt4L6yhc6pNRT0zgasA2grhe1fzJ0GKJIDupP5XcuHLVVO-tLH5Cke-TkSlhzn6w3bQMPCU1dgfYKIAaNMaLwOZMYmpS6KJkG5cyExCMf8mJAQ_eTq_OwKlJZ3rMuR9blnnV5MiGvlp_MeiiQywa_88xdDvQo3uFBe_YlH4xCriWAACtKFhuO9wpSUbqEF0rxgnsit0bRyAfT0uV_FGFCni9fo1HwDDANtAscg6voJFYYLf5_TBqweTIt5IQ86KVtSW2qhK9uExMiV-RwZTqrb5rqawAnFzxN8NNHl5P-jGxMjw8P8oO9o_3H5EYaFESgjmyR9fnZAp5gpDe3T4N6UfL5qvX5N4dka_s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+for+improved+isopropanol-butanol+production+by+a+Clostridium+strain+from+glucose+and+hemicellulose+through+consolidated+bioprocessing&rft.jtitle=Biotechnology+for+biofuels&rft.au=Xin%2C+Fengxue&rft.au=Chen%2C+Tianpeng&rft.au=Jiang%2C+Yujiang&rft.au=Dong%2C+Weiliang&rft.date=2017-05-08&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=10&rft.spage=118&rft_id=info:doi/10.1186%2Fs13068-017-0805-1&rft_id=info%3Apmid%2F28503195&rft.externalDocID=28503195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon |