Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing

High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic species, which could p...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology for biofuels Vol. 10; no. 1; p. 118
Main Authors Xin, Fengxue, Chen, Tianpeng, Jiang, Yujiang, Dong, Weiliang, Zhang, Wenming, Zhang, Min, Wu, Hao, Ma, Jiangfeng, Jiang, Min
Format Journal Article
LanguageEnglish
Published England BioMed Central 08.05.2017
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. A novel wild-type sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. The co-production of isopropanol with butanol by the newly isolated sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct production of butanol-isopropanol from polysaccharides, hemicellulose through secretion of indigenous thermostable xylanase, shows great potential using lignocellulosic wastes for biofuel production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1754-6834
1754-6834
2731-3654
DOI:10.1186/s13068-017-0805-1