Interpreting neural decoding models using grouped model reliance

Machine learning algorithms are becoming increasingly popular for decoding psychological constructs based on neural data. However, as a step towards bridging the gap between theory-driven cognitive neuroscience and data-driven decoding approaches, there is a need for methods that allow to interpret...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 16; no. 1; p. e1007148
Main Authors Valentin, Simon, Harkotte, Maximilian, Popov, Tzvetan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.01.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Machine learning algorithms are becoming increasingly popular for decoding psychological constructs based on neural data. However, as a step towards bridging the gap between theory-driven cognitive neuroscience and data-driven decoding approaches, there is a need for methods that allow to interpret trained decoding models. The present study demonstrates grouped model reliance as a model-agnostic permutation-based approach to this problem. Grouped model reliance indicates the extent to which a trained model relies on conceptually related groups of variables, such as frequency bands or regions of interest in electroencephalographic (EEG) data. As a case study to demonstrate the method, random forest and support vector machine models were trained on within-participant single-trial EEG data from a Sternberg working memory task. Participants were asked to memorize a sequence of digits (0-9), varying randomly in length between one, four and seven digits, where EEG recordings for working memory load estimation were taken from a 3-second retention interval. The present results confirm previous findings insofar as both random forest and support vector machine models relied on alpha-band activity in most subjects. However, as revealed by further analyses, patterns in frequency and topography varied considerably between individuals, pointing to more pronounced inter-individual differences than previously reported.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1007148