Using spatial analysis to predict health care use at the local level: a case study of type 2 diabetes medication use and its association with demographic change and socioeconomic status
Local health status and health care use may be negatively influenced by low local socio-economic profile, population decline and population ageing. To support the need for targeted local health care, we explored spatial patterns of type 2 diabetes mellitus (T2DM) drug use at local level and determin...
Saved in:
Published in | PloS one Vol. 8; no. 8; p. e72730 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
30.08.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Local health status and health care use may be negatively influenced by low local socio-economic profile, population decline and population ageing. To support the need for targeted local health care, we explored spatial patterns of type 2 diabetes mellitus (T2DM) drug use at local level and determined its association with local demographic, socio-economic and access to care variables. We assessed spatial variability in these associations. We estimated the five-year prevalence of T2DM drug use (2005-2009) in persons aged 45 years and older at four-digit postal code level using the University of Groningen pharmacy database IADB.nl. Statistics Netherlands supplied data on potential predictor variables. We assessed spatial clustering, correlations and estimated a multiple linear regression model and a geographically weighted regression (GWR) model. Prevalence of T2DM medicine use ranged from 2.0% to 25.4%. The regression model included the extent of population ageing, proportion of social welfare/benefits, proportion of low incomes and proportion of pensioners, all significant positive predictors of local T2DM drug use. The GWR model demonstrated considerable spatial variability in the association between T2DM drug use and above predictors and was more accurate. The findings demonstrate the added value of spatial analysis in predicting health care use at local level. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: AD FJ EH. Analyzed the data: AD. Contributed reagents/materials/analysis tools: MB JB. Wrote the paper: AD FJ EH. Provided methodological advice and critically reviewed the manuscript: MB JB RL LJGW. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0072730 |