Cutaneous antimicrobial peptides: New “actors” in pollution related inflammatory conditions

Ozone (O3) exposure has been reported to contribute to various cutaneous inflammatory conditions, such as eczema, psoriasis, rush etc. via a redox-inflammatory pathway. O3 is too reactive to penetrate cutaneous tissue; it interacts with lipids present in the outermost layer of skin, resulting in for...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 41; p. 101952
Main Authors Woodby, Brittany, Pambianchi, Erika, Ferrara, Francesca, Therrien, Jean-Philippe, Pecorelli, Alessandra, Messano, Nicolo’, Lila, Mary Ann, Valacchi, Giuseppe
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ozone (O3) exposure has been reported to contribute to various cutaneous inflammatory conditions, such as eczema, psoriasis, rush etc. via a redox-inflammatory pathway. O3 is too reactive to penetrate cutaneous tissue; it interacts with lipids present in the outermost layer of skin, resulting in formation of oxidized molecules and hydrogen peroxide (H2O2). Interestingly, several inflammatory skin pathologies demonstrate altered levels of antimicrobial peptides (AMPs). These small, cationic peptides are found in various cells, including keratinocytes, eccrine gland cells, and seboctyes. Classically, AMPs function as antimicrobial agents. Recent studies indicate that AMPs also play roles in inflammation, angiogenesis, and wound healing. Since altered levels of AMPs have been detected in pollution-associated skin pathologies, we hypothesized that exposure to O3 could affect the levels of AMPs in the skin. We examined levels of AMPs using qRT-PCR, Western blotting, and immunofluorescence in vitro (human keratinocytes), ex vivo (human skin explants), and in vivo (human volunteer subjects exposed to O3) and observed increased levels of all the measured AMPs upon O3 exposure. In addition, in vitro studies have confirmed the redox regulation of AMPs in keratinocytes. This novel finding suggests that targeting AMPs could be a possible defensive strategy to combat pollution-associated skin conditions. [Display omitted] •AMPs (hBDs1-3, CAMP) increase in O3 exposed human skin by a redox mechanism.•Transcriptional upregulation of AMPs in response to O3 exposure is due to an altered redox status.•Pollution increase AMPs could be the connection between pollution exposure and the development/exacerbation of inflammatory skin conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2021.101952