Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning

Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hyb...

Full description

Saved in:
Bibliographic Details
Published inMaterials today bio Vol. 14; p. 100252
Main Authors Mayoral, Isabel, Bevilacqua, Elisa, Gómez, Gorka, Hmadcha, Abdelkrim, González-Loscertales, Ignacio, Reina, Esther, Sotelo, Julio, Domínguez, Antonia, Pérez-Alcántara, Pedro, Smani, Younes, González-Puertas, Patricia, Mendez, Ana, Uribe, Sergio, Smani, Tarik, Ordoñez, Antonio, Valverde, Israel
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ​± ​15 ​mmHg) and a porosity gradient ranging from 80 to 10 ​μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention. [Display omitted] •This study combines multidisciplinary approach for bioprinting patient-specific.•We create a 3D scaffold, printed using a hybrid fused deposition modelling and electrospinning techniques.•The graft shows adequate resistance to physiological aortic pressure and a porosity gradient.•Multipotent mesenchymal stem cells seeded in the scaffold are differentiated to derived vascular smooth muscle cells.•dVSMC shows adequate endothelin- 1 induced Ca2+ increase associated with ETA overexpression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Equally contributed.
ISSN:2590-0064
2590-0064
DOI:10.1016/j.mtbio.2022.100252