Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder

Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional conne...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 190; pp. 213 - 223
Main Authors Yang, Xun, Liu, Jin, Meng, Yajing, Xia, Mingrui, Cui, Zaixu, Wu, Xi, Hu, Xinyu, Zhang, Wei, Gong, Gaolang, Gong, Qiyong, Sweeney, John A., He, Yong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional connectivity. However, little is known about whether intrinsic functional brain networks in patients with SAD are topologically disrupted. Here, we collected resting-state fMRI data from 33 drug-naive patients with SAD and 32 healthy controls (HC), constructed functional networks with 34 predefined regions based on previous meta-analytic research with task-based fMRI in SAD, and performed network-based statistic and graph-theory analyses. The network-based statistic analysis revealed a single connected abnormal circuitry including the frontolimbic circuit (termed the “fear circuit”, including the dorsolateral prefrontal cortex, ventral medial prefrontal cortex and insula) and posterior cingulate/occipital areas supporting perceptual processing. In this single altered network, patients with SAD had higher functional connectivity than HC. At the global level, graph-theory analysis revealed that the patients exhibited a lower normalized characteristic path length than HC, which suggests a disorder-related shift of network topology toward randomized configurations. SAD-related deficits in nodal degree, efficiency and participation coefficient were detected in the parahippocampal gyrus, posterior cingulate cortex, dorsolateral prefrontal cortex, insula and the calcarine sulcus. Aspects of abnormal connectivity were associated with anxiety symptoms. These findings highlight the aberrant topological organization of functional brain network organization in SAD, which provides insights into the neural mechanisms underlying excessive fear and avoidance of social interactions in patients with debilitating social anxiety. •We defined 34 network nodes based on task-based SAD fMRI meta-analytic studies.•SAD had higher functional connectivity in a single connected component.•SAD had a shift of brain network topology toward randomized configurations.•Abnormal connectivity in SAD was significantly associated with anxiety symptoms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2017.12.011