Propensity for a Leucine Zipper-Like Domain of Human Immunodeficiency Virus Type 1 gp41 to Form Oligomers Correlates with a Role in Virus-Induced Fusion Rather than Assembly of the Glycoprotein Complex

For a number of viruses, oligomerization is a critical component of envelope processing and surface expression. Previously, we reported that a synthetic peptide (DP-107) corresponding to the putative leucine zipper region (aa 553-590) of the transmembrane protein (gp41) of human immunodeficiency vir...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 91; no. 26; pp. 12676 - 12680
Main Authors Wild, Carl, Dubay, John W., Greenwell, Teresa, Baird, Teaster, Oas, Terrence G., McDanal, Charlene, Hunter, Eric, Matthews, Thomas
Format Journal Article
LanguageEnglish
Published United States National Academy of the Sciences of the United States of America 20.12.1994
National Acad Sciences
National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For a number of viruses, oligomerization is a critical component of envelope processing and surface expression. Previously, we reported that a synthetic peptide (DP-107) corresponding to the putative leucine zipper region (aa 553-590) of the transmembrane protein (gp41) of human immunodeficiency virus type 1 (HIV-1) exhibited α-helical secondary structure and self-associated as a coiled coil. In view of the tendency of this type of structure to mediate protein association, we speculated that this region of gp41 might play a role in HIV-1 envelope oligomerization. However, later it was shown that mutations which should disrupt the structural elements of this region of gp41 did not affect envelope processing, transport, or surface expression (assembly oligomerization). In this report we compare the effects of amino acid substitutions within this coiled-coil region on structure and function of both viral envelope proteins and the corresponding synthetic peptides. Our results establish a correlation between the destabilizing effects of amino acid substitutions on coiled-coil structure in the peptide model and phenotype of virus entry. These biological and physical biochemical studies do not support a role for the coiled-coil structure in mediating the assembly oligomerization of HIV-1 envelope but do imply that this region of gp41 plays a key role in the sequence of events associated with viral entry. We propose a functional role for the coiled-coil domain of HIV-1 gp41.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.91.26.12676