Maternal separation stress leads to resilience against neuropathic pain in adulthood
Early life stress (ELS) leads to a permanent reprogramming of biochemical stress response cascades that may also be relevant for the processing of chronic pain states such as neuropathy. Despite clinical evidence, little is known about ELS-related vulnerability for neuropathic pain and the possibly...
Saved in:
Published in | Neurobiology of stress Vol. 8; pp. 21 - 32 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Early life stress (ELS) leads to a permanent reprogramming of biochemical stress response cascades that may also be relevant for the processing of chronic pain states such as neuropathy. Despite clinical evidence, little is known about ELS-related vulnerability for neuropathic pain and the possibly underlying etiology.
In the framework of experimental studies aimed at investigating the respective relationships we used the established ELS model of maternal separation (MS). Rat dams and neonates were separated for 3 h/day from post-natal day 2–12. At adulthood, noxious mechanical and thermal thresholds were assessed before and during induction of neuropathic pain by chronic constriction injury (CCI). The potential involvement of spinal glutamatergic transmission, glial cells, pro-inflammatory cytokines and growth factors was studied by using qPCR.
MS per se did not modify pain thresholds. But, when exposed to neuropathic pain, MS rats exhibited a marked reduction of thermal sensitivity and a delayed development of mechanical allodynia/hyperalgesia when compared to control animals. Also, MS did not alter glucocorticoid receptor mRNA levels, but prevented the CCI-induced down-regulation of NR1 and NR2 sub-units of the NMDA receptor and of the glutamate transporter EAAT3 as observed at 21 days post-surgery. Additionally, CCI-provoked up-regulation of glial cell markers was either prevented (GFAP for astrocytes) or dampened (Iba1 for microglia) by MS. Pro-inflammatory cytokine mRNA expression was either not affected (IL-6) or reduced (IL-1β) by MS shortly after CCI. The growth factors GDNF and NGF were only slightly downregulated 4 days after CCI in the MS-treated animals. The changes in glutamatergic signaling, astroglial and cytokine activation as well as neurotrophin expression could, to some extent, explain these changes in pain behavior. Taken together, the results obtained in the described experimental conditions support the mismatch theory of chronic stress where an early life stress, rather than predisposing individuals to certain pathologies, renders them resilient. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2352-2895 2352-2895 |
DOI: | 10.1016/j.ynstr.2017.11.002 |