Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques

First episode psychosis (FEP) patients are of particular interest for neuroimaging investigations because of the absence of confounding effects due to medications and chronicity. Nonetheless, imaging data are prone to heterogeneity because for example of age, gender or parameter setting differences....

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 145; no. Pt B; pp. 238 - 245
Main Authors Squarcina, Letizia, Castellani, Umberto, Bellani, Marcella, Perlini, Cinzia, Lasalvia, Antonio, Dusi, Nicola, Bonetto, Chiara, Cristofalo, Doriana, Tosato, Sarah, Rambaldelli, Gianluca, Alessandrini, Franco, Zoccatelli, Giada, Pozzi-Mucelli, Roberto, Lamonaca, Dario, Ceccato, Enrico, Pileggi, Francesca, Mazzi, Fausto, Santonastaso, Paolo, Ruggeri, Mirella, Brambilla, Paolo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2017
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:First episode psychosis (FEP) patients are of particular interest for neuroimaging investigations because of the absence of confounding effects due to medications and chronicity. Nonetheless, imaging data are prone to heterogeneity because for example of age, gender or parameter setting differences. With this work, we wanted to take into account possible nuisance effects of age and gender differences across dataset, not correcting the data as a pre-processing step, but including the effect of nuisance covariates in the classification phase. To this aim, we developed a method which, based on multiple kernel learning (MKL), exploits the effect of these confounding variables with a subject-depending kernel weighting procedure. We applied this method to a dataset of cortical thickness obtained from structural magnetic resonance images (MRI) of 127 FEP patients and 127 healthy controls, who underwent either a 3Tesla (T) or a 1.5T MRI acquisition. We obtained good accuracies, notably better than those obtained with standard SVM or MKL methods, up to more than 80% for frontal and temporal areas. To our best knowledge, this is the largest classification study in FEP population, showing that fronto-temporal cortical thickness can be used as a potential marker to classify patients with psychosis. •Largest classification study in FEP population•Fronto-temporal cortical thickness discriminates between psychosis patients and healthy controls.•Frontal and temporal cortical thickness are involved in psychosis.•Nuisance correction based on age and gender during the training phase improves classification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2015.12.007