Sustainable Design of Innovative Kiwi Byproducts-Based Ingredients Containing Probiotics
Industrial processing of kiwifruits generates a large quantity of byproducts, estimated to be one million tons per year. The resulting byproducts are rich sources of bioactive components that may be used as additives, hence minimizing economic and environmental issues. In this study, kiwifruit bypro...
Saved in:
Published in | Foods Vol. 11; no. 15; p. 2334 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
05.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Industrial processing of kiwifruits generates a large quantity of byproducts, estimated to be one million tons per year. The resulting byproducts are rich sources of bioactive components that may be used as additives, hence minimizing economic and environmental issues. In this study, kiwifruit byproducts were used to develop added-value food-grade ingredients containing probiotics. The byproducts were divided into peels and pomace. Both residues were inoculated with a selected strain of probiotic (Lacticaseibacillus casei 431®), and two variants were additionally enhanced with prebiotic sources (buckwheat and black rice flours). The inoculated powders were obtained by freeze-drying, and the final ingredients were coded as KP (freeze-dried kiwi peels), KBR (freeze-dried kiwi pomace and black rice flour), KPB (freeze-dried kiwi pomace and buckwheat flour), and KPO (freeze-dried kiwi pomace). The phytochemical profile was assessed using different spectrophotometric methods, such as the determination of polyphenols, flavonoids, and carotenoids. The kiwi byproduct-based formulations showed a polyphenolic content varying from 10.56 ± 0.30 mg AGE/g DW to 13.16 ± 0.33 mg AGE/g, and the survival rate of lactic acid bacteria after freeze-drying ranged from 73% to 88%. The results showed an increase in total flavonoid content from the oral to gastric environment and controlled release in the intestinal environment, whereas a maximum survival rate of probiotics at the intestinal end stage was 48%. The results of SEM and droplet size measurements revealed vesicular and polyhedral structures on curved surfaces linked by ridge sections. The CIEL*a*b* color data were strongly associated with the particular pigment in kiwi pulp, as well as the color of the additional flour. Finally, the ingredients were tested in protein bars and enhanced the value of the final food product regarding its phytochemical and probiotic content. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods11152334 |