Role of secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) in prostate cancer progression: Novel biomarker and therapeutic target
There remains a serious need to prevent the progression of invasive prostate cancer (PCa). We previously showed that secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a multifunctional innate immunity regulator via TLR4 ligation which has been implicated in PCa progression. H...
Saved in:
Published in | EBioMedicine Vol. 61; p. 103059 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | There remains a serious need to prevent the progression of invasive prostate cancer (PCa). We previously showed that secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a multifunctional innate immunity regulator via TLR4 ligation which has been implicated in PCa progression. Here we investigate the role of eNAMPT as a diagnostic biomarker and therapeutic target in the progression of PCa.
Tumor NAMPT expression and plasma eNAMPT level were evaluated in human subjects with various PCa tumor stages and high risk subjects followed-up clinically for PCa. The genetic regulation of NAMPT expression in PCa cells and the role of eNAMPT in PCa invasion were investigated utilizing in vitro and in vivo models.
Marked NAMPT expression was detected in human extraprostatic-invasive PCa tissues compared to minimal expression of organ-confined PCa. Plasma eNAMPT levels were significantly elevated in PCa subjects compared to male controls, and significantly greater in subjects with extraprostatic-invasive PCa compared to subjects with organ-confined PCa. Plasma eNAMPT levels showed significant predictive value for diagnosing PCa. NAMPT expression and eNAMPT secretion were highly upregulated in human PCa cells in response to hypoxia-inducible factors and EGF. In vitro cell culture and in vivo preclinical mouse model studies confirmed eNAMPT-mediated enhancement of PCa invasiveness into muscle tissues and dramatic attenuation of PCa invasion by weekly treatment with an eNAMPT-neutralizing polyclonal antibody.
This study suggests that eNAMPT is a potential biomarker for PCa, especially invasive PCa. Neutralization of eNAMPT may be an effective therapeutic approach to prevent PCa invasion and progression. |
---|---|
ISSN: | 2352-3964 2352-3964 |
DOI: | 10.1016/j.ebiom.2020.103059 |