Renal tubular HIF-2α expression requires VHL inactivation and causes fibrosis and cysts
The Hypoxia-inducible transcription Factor (HIF) represents an important adaptive mechanism under hypoxia, whereas sustained activation may also have deleterious effects. HIF activity is determined by the oxygen regulated α-subunits HIF-1α or HIF-2α. Both are regulated by oxygen dependent degradatio...
Saved in:
Published in | PloS one Vol. 7; no. 1; p. e31034 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Hypoxia-inducible transcription Factor (HIF) represents an important adaptive mechanism under hypoxia, whereas sustained activation may also have deleterious effects. HIF activity is determined by the oxygen regulated α-subunits HIF-1α or HIF-2α. Both are regulated by oxygen dependent degradation, which is controlled by the tumor suppressor "von Hippel-Lindau" (VHL), the gatekeeper of renal tubular growth control. HIF appears to play a particular role for the kidney, where renal EPO production, organ preservation from ischemia-reperfusion injury and renal tumorigenesis are prominent examples. Whereas HIF-1α is inducible in physiological renal mouse, rat and human tubular epithelia, HIF-2α is never detected in these cells, in any species. In contrast, distinct early lesions of biallelic VHL inactivation in kidneys of the hereditary VHL syndrome show strong HIF-2α expression. Furthermore, knockout of VHL in the mouse tubular apparatus enables HIF-2α expression. Continuous transgenic expression of HIF-2α by the Ksp-Cadherin promotor leads to renal fibrosis and insufficiency, next to multiple renal cysts. In conclusion, VHL appears to specifically repress HIF-2α in renal epithelia. Unphysiological expression of HIF-2α in tubular epithelia has deleterious effects. Our data are compatible with dedifferentiation of renal epithelial cells by sustained HIF-2α expression. However, HIF-2α overexpression alone is insufficient to induce tumors. Thus, our data bear implications for renal tumorigenesis, epithelial differentiation and renal repair mechanisms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: REH TH CW CR RK SB TW PM K-UE PM MSW. Performed the experiments: RES TH MT RG BK KXK DS CR RK SB GS JS. Analyzed the data: RES TH MT RG BK CW KXK DS CR RK SB PB GS JS CW TW KA PM MSW. Contributed reagents/materials/analysis tools: MT CW DS RK SB PB CR KA PM MSW. Wrote the paper: RES TH MSW. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0031034 |