Functional implications of multiseriate cortical sclerenchyma for soil resource capture and crop improvement

Abstract Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted wit...

Full description

Saved in:
Bibliographic Details
Published inAoB plants Vol. 14; no. 6; p. plac050
Main Author Schneider, Hannah M
Format Journal Article
LanguageEnglish
Published US Oxford University Press 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture. Root traits play a primary role in plant adaption to stress. Multiseriate cortical sclerenchyma (MCS) is an anatomical trait characterized by small cells encrusted with lignin in the outer cortex. Progress has recently been achieved in understanding the development and physiological implications of MCS. This review proposes that MCS is a useful trait for water and nutrient acquisition, particularly in edaphic stress conditions. Multiseriate cortical sclerenchyma may be a useful breeding target for improved soil resource capture and biotic stress tolerance in several major crop species including wheat, maize, sorghum and barley.
AbstractList Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture.
Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture. Root traits play a primary role in plant adaption to stress. Multiseriate cortical sclerenchyma (MCS) is an anatomical trait characterized by small cells encrusted with lignin in the outer cortex. Progress has recently been achieved in understanding the development and physiological implications of MCS. This review proposes that MCS is a useful trait for water and nutrient acquisition, particularly in edaphic stress conditions. Multiseriate cortical sclerenchyma may be a useful breeding target for improved soil resource capture and biotic stress tolerance in several major crop species including wheat, maize, sorghum and barley.
Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture.Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture.
Abstract Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture. Root traits play a primary role in plant adaption to stress. Multiseriate cortical sclerenchyma (MCS) is an anatomical trait characterized by small cells encrusted with lignin in the outer cortex. Progress has recently been achieved in understanding the development and physiological implications of MCS. This review proposes that MCS is a useful trait for water and nutrient acquisition, particularly in edaphic stress conditions. Multiseriate cortical sclerenchyma may be a useful breeding target for improved soil resource capture and biotic stress tolerance in several major crop species including wheat, maize, sorghum and barley.
Author Schneider, Hannah M
Author_xml – sequence: 1
  givenname: Hannah M
  orcidid: 0000-0003-4655-6250
  surname: Schneider
  fullname: Schneider, Hannah M
  email: hannah.schneider@wur.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36545297$$D View this record in MEDLINE/PubMed
BookMark eNqFUc9rVDEYDFKxtfbqUQJe9LBtfue9i1CKtULBi55DNvvFpuQlzySv0P_erLuVWigGQhK-mckw8xodpJwAobeUnFIy8jOb13O0Z307IskLdMSIoCs2SHrw6H6ITmq9JX1xNihBXqFDrqSQbNRHKF4uybWQk404THMMzm5fFWePpyW2UKEE2wC7XFofRlxdhALJ3dxPFvtccM0h4gI1L8V1nJ3bUgDbtMGu5HmrWvIdTJDaG_TS21jhZH8eox-Xn79fXK2uv335enF-vXKSybbim8FzRpXS3SXhQIQlRNO1JYzSQXhqxaBGMVjmifOj05qogW0GKT14WBN-jD7tdOdlPcHG9a-LjWYuYbLl3mQbzL-TFG7Mz3xnRq2YZrwLfNgLlPxrgdrMFKqDGG2CvFTDtNRUUUlFh75_Ar3tQfQ4q-G0u1REi62jd48d_bXyUEQHiB2gZ1ZrAW9caH-q6AZDNJSYbeVmV7nZV95pp09oD8rPEj7uCHmZ_4f9DRQWwTA
CitedBy_id crossref_primary_10_1371_journal_pone_0286736
Cites_doi 10.1088/1748-9326/abe74e
10.1073/pnas.2110245119
10.1016/j.tplants.2022.02.009
10.1007/s11104-021-05010-y
10.1104/pp.17.00500
10.1104/pp.114.250449
10.1111/tpj.15560
10.1104/pp.114.241711
10.1093/aob/mcs293
10.1007/s00122-016-2772-5
10.1038/nclimate3286
10.1002/pld3.334
10.1016/j.copbio.2018.12.008
10.1016/j.copbio.2012.11.004
10.1093/jxb/erm097
10.1101/sqb.2012.77.014662
10.1071/FP14018
10.1104/pp.114.253328
10.1071/AR9890943
10.1104/pp.111.175489
10.1002/pld3.310
10.1016/0038-0717(86)90078-7
10.1007/s11104-017-3533-1
10.1111/pce.13197
10.3389/fpls.2022.827369
10.1016/j.tplants.2016.01.009
10.3389/fpls.2016.01925
10.1093/jxb/erq350
10.3389/fpls.2022.1003868
10.1093/aob/mcac087
10.1007/s00122-014-2353-4
10.1007/s11738-016-2199-2
10.1073/pnas.2201072119
10.1073/pnas.2012087118
10.1016/j.copbio.2021.07.019
10.1093/jxb/erp200
10.1016/j.pbi.2019.12.006
10.1104/pp.17.00648
10.1111/j.1365-3040.2007.01639.x
10.1111/nph.15738
10.1104/pp.20.00211
10.1016/j.still.2004.08.003
10.1002/tpg2.20003
10.1126/science.abf3013
10.1007/s00572-009-0266-x
10.1111/j.1469-8137.2008.02573.x
10.1007/s00122-016-2823-y
10.1080/01904160802116068
10.1111/j.1365-3040.2009.02099.x
10.1111/j.1365-3040.2009.01926.x
10.1093/aob/mcac058
10.1007/s10886-017-0904-2
10.1104/pp.19.00262
10.1146/annurev.mi.41.100187.002341
10.1104/pp.114.249037
10.1111/pce.14135
10.1111/pce.14269
10.1111/j.1365-3040.2010.02223.x
10.3389/fpls.2020.00546
10.1111/pce.12684
10.1093/jxb/erv121
10.1071/FP14057
10.1104/pp.19.00617
10.1007/s11104-015-2639-6
10.1016/0141-0229(80)90003-4
10.1002/0470047380
10.1093/jxb/erz271
10.1093/jxb/eru162
10.3389/fpls.2020.01247
10.1093/jxb/eraa165
10.3389/fpls.2013.00355
10.2136/vzj2017.05.0107
10.1071/FP15194
10.1111/nph.17180
10.1111/j.1461-0248.2008.01164.x
10.1016/j.agwat.2016.07.008
10.1111/pce.12933
10.1016/j.fcr.2019.107612
10.1093/biosci/bix010
10.1111/j.1365-3032.2010.00723.x
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company.
The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOI 10.1093/aobpla/plac050
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agriculture Science Database
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Agricultural Science Database

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
EISSN 2041-2851
ExternalDocumentID PMC9762723
36545297
10_1093_aobpla_plac050
10.1093/aobpla/plac050
Genre Journal Article
Review
GroupedDBID .I3
0R~
2XV
4.4
5VS
5WA
6J9
70E
AAFWJ
AAKDD
AAMVS
AAOGV
AAPPN
AAPXW
AAVAP
ABEJV
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACPRK
ADBBV
ADHZD
ADRAZ
AENEX
AENZO
AFULF
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAYMD
BCNDV
BTTYL
C1A
CIDKT
CZ4
D~K
E3Z
ECGQY
EJD
GROUPED_DOAJ
GX1
H13
HYE
HZ~
IAO
IFM
ISR
ITC
KQ8
KSI
M48
ML0
M~E
O5R
O5S
OAWHX
OJQWA
OK1
PEELM
RD5
RNS
ROL
ROX
RPM
RXO
TOX
WG7
X7H
~91
~D7
~S-
7X2
AAYXX
ABGNP
AEUYN
AFKRA
AFPKN
AMNDL
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M0K
M7P
PATMY
PHGZM
PHGZT
PIMPY
PYCSY
NPM
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c525t-3d8f32166754503e04a0071ba021184f1a486948a2f0cf9c770682d855fefeb03
IEDL.DBID M48
ISSN 2041-2851
IngestDate Thu Aug 21 18:38:59 EDT 2025
Mon Jul 21 10:12:40 EDT 2025
Fri Jul 25 18:58:16 EDT 2025
Wed Feb 19 02:24:53 EST 2025
Thu Apr 24 23:07:13 EDT 2025
Tue Jul 01 00:20:40 EDT 2025
Tue Nov 12 15:13:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords cortex
Anatomy
multiseriate cortical sclerenchyma
edaphic stress
root
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-3d8f32166754503e04a0071ba021184f1a486948a2f0cf9c770682d855fefeb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4655-6250
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/aobpla/plac050
PMID 36545297
PQID 3169460740
PQPubID 135331
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9762723
proquest_miscellaneous_2757161514
proquest_journals_3169460740
pubmed_primary_36545297
crossref_citationtrail_10_1093_aobpla_plac050
crossref_primary_10_1093_aobpla_plac050
oup_primary_10_1093_aobpla_plac050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: England
– name: Oxford
PublicationTitle AoB plants
PublicationTitleAlternate AoB Plants
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Turner (2022121920304585700_CIT0081) 2014; 41
Lynch (2022121920304585700_CIT0051) 2014; 65
Burridge (2022121920304585700_CIT0013) 2017; 130
Heymans (2022121920304585700_CIT0035) 2020; 182
Schneider (2022121920304585700_CIT0071) 2020; 11
Hirel (2022121920304585700_CIT0037) 2007; 58
Mommer (2022121920304585700_CIT0055) 2016; 21
Schneider (2022121920304585700_CIT0067) 2020; 11
Burridge (2022121920304585700_CIT0012) 2019; 244
Hunter (2022121920304585700_CIT0039) 2017; 67
Schneider (2022121920304585700_CIT0069) 2022; 45
Strock (2022121920304585700_CIT0078) 2022; 27
Strock (2022121920304585700_CIT0077) 2019; 70
Rewald (2022121920304585700_CIT0060) 2011; 34
Lopez-valdivia (2022121920304585700_CIT0047) 2022; 119
Gao (2022121920304585700_CIT0032) 2016; 39
Vanhees (2022121920304585700_CIT0082) 2020; 71
Whitmore (2022121920304585700_CIT0085) 2009; 60
Stott (2022121920304585700_CIT0075) 1986; 18
Chabbi (2022121920304585700_CIT0017) 2017; 7
Colombi (2022121920304585700_CIT0022) 2019; 180
Galindo-Castañeda (2022121920304585700_CIT0030) 2018; 41
Schneider (2022121920304585700_CIT0072) 2021; 118
York (2022121920304585700_CIT0086) 2013; 4
Canarini (2022121920304585700_CIT0015) 2019; 10
Schneider (2022121920304585700_CIT0068) 2017; 40
Cooper (2022121920304585700_CIT0024) 2021; 16
Chimungu (2022121920304585700_CIT0018) 2014; 166
Colombi (2022121920304585700_CIT0023) 2016; 43
Zhu (2022121920304585700_CIT0087) 2010; 33
Lynch (2022121920304585700_CIT0049) 2019; 223
Burton (2022121920304585700_CIT0014) 2014; 127
He (2022121920304585700_CIT0034) 2016; 179
Fageria (2022121920304585700_CIT0029) 2008; 31
Blum (2022121920304585700_CIT0010) 2014; 41
Castano-Duque (2022121920304585700_CIT0016) 2017; 43
Birt (2022121920304585700_CIT0009) 2022
Jacobsen (2022121920304585700_CIT0041) 2021; 231
Kadam (2022121920304585700_CIT0044) 2015; 167
Whalley (2022121920304585700_CIT0084) 2005; 84
Crawford (2022121920304585700_CIT0025) 1980; 2
Schneider (2022121920304585700_CIT0073) 2020; 5
Lynch (2022121920304585700_CIT0050) 2021; 109
Bernhard-Reversat (2022121920304585700_CIT0008) 1997; 325
Klein (2022121920304585700_CIT0046) 2020
Striker (2022121920304585700_CIT0076) 2007; 30
Galindo-Castañeda (2022121920304585700_CIT0031) 2022; 13
Schneider (2022121920304585700_CIT0070) 2017; 423
Tardieu (2022121920304585700_CIT0079) 2022; 73
Badri (2022121920304585700_CIT0005) 2009; 32
Bernardo (2022121920304585700_CIT0007) 2016; 129
Chimungu (2022121920304585700_CIT0019) 2015; 66
Stelpflug (2022121920304585700_CIT0074) 2015; 9
Pandey (2022121920304585700_CIT0058) 2021; 371
Lynch (2022121920304585700_CIT0052) 2021
Kadam (2022121920304585700_CIT0043) 2017; 174
Meihls (2022121920304585700_CIT0054) 2012; 77
Wang (2022121920304585700_CIT0083) 2016; 38
Lynch (2022121920304585700_CIT0048) 2013; 112
Ahmed (2022121920304585700_CIT0002) 2015; 398
Chimungu (2022121920304585700_CIT0020) 2014; 166
Schneider (2022121920304585700_CIT0064) 2022
Dreyer (2022121920304585700_CIT0027) 2010; 20
Schneider (2022121920304585700_CIT0066) 2017; 174
Evert (2022121920304585700_CIT0028) 2006
IPCC. (2022121920304585700_CIT0040) 2021
Muro-Villanueva (2022121920304585700_CIT0057) 2019; 56
Bonawitz (2022121920304585700_CIT0011) 2013; 24
Riedell (2022121920304585700_CIT0062) 1990; 97
Huang (2022121920304585700_CIT0038) 2022; 119
De Deyn (2022121920304585700_CIT0026) 2008; 11
Lynch (2022121920304585700_CIT0053) 2021; 466
Kirk (2022121920304585700_CIT0045) 1987; 41
Guo (2022121920304585700_CIT0033) 2008; 180
Clément (2022121920304585700_CIT0021) 2022
Saengwilai (2022121920304585700_CIT0063) 2014; 166
Tardieu (2022121920304585700_CIT0080) 2017; 16
Heymans (2022121920304585700_CIT0036) 2021; 5
Amtmann (2022121920304585700_CIT0003) 2022; 45
Anderson (2022121920304585700_CIT0004) 2020; 56
Bengough (2022121920304585700_CIT0006) 2011; 62
Johnson (2022121920304585700_CIT0042) 2010; 35
Moore (2022121920304585700_CIT0056) 2017; 7
Alvarez (2022121920304585700_CIT0001) 2002
Richards (2022121920304585700_CIT0061) 1989; 40
Postma (2022121920304585700_CIT0059) 2011; 156
Schneider (2022121920304585700_CIT0065) 2020; 13
References_xml – volume: 16
  start-page: 054022
  year: 2021
  ident: 2022121920304585700_CIT0024
  article-title: To till or not to till in a temperate ecosystem? Implications for climate change mitigation
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/abe74e
– volume: 119
  start-page: e2110245119
  year: 2022
  ident: 2022121920304585700_CIT0047
  article-title: Gradual domestication of root traits in the earliest maize from Tehuacan
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.2110245119
– volume: 27
  start-page: 520
  year: 2022
  ident: 2022121920304585700_CIT0078
  article-title: Anatomics: high-throughput phenotyping of plant anatomy
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2022.02.009
– volume: 466
  start-page: 21
  year: 2021
  ident: 2022121920304585700_CIT0053
  article-title: Root anatomy and soil resource capture
  publication-title: Plant and Soil
  doi: 10.1007/s11104-021-05010-y
– volume: 174
  start-page: 2302
  year: 2017
  ident: 2022121920304585700_CIT0043
  article-title: Genetic control of plasticity in root morphology and anatomy of rice in response to water-deficit
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.00500
– volume: 166
  start-page: 2166
  year: 2014
  ident: 2022121920304585700_CIT0020
  article-title: Large root cortical cell size improves drought tolerance in maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.250449
– volume: 109
  start-page: 415
  year: 2021
  ident: 2022121920304585700_CIT0050
  article-title: Harnessing root architecture to address global challenges
  publication-title: Plant Journal
  doi: 10.1111/tpj.15560
– volume: 166
  start-page: 726
  year: 2014
  ident: 2022121920304585700_CIT0063
  article-title: Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.241711
– volume: 112
  start-page: 347
  year: 2013
  ident: 2022121920304585700_CIT0048
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs293
– volume: 129
  start-page: 2323
  year: 2016
  ident: 2022121920304585700_CIT0007
  article-title: Bandwagons I, too, have known
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-016-2772-5
– volume: 7
  start-page: 307
  year: 2017
  ident: 2022121920304585700_CIT0017
  article-title: Aligning agriculture and climate policy
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate3286
– volume: 5
  start-page: e00290
  year: 2021
  ident: 2022121920304585700_CIT0036
  article-title: Combining cross-section images and modeling tools to create high-resolution root system hydraulic atlases in Zea mays
  publication-title: Plant Direct
  doi: 10.1002/pld3.334
– volume: 56
  start-page: 202
  year: 2019
  ident: 2022121920304585700_CIT0057
  article-title: Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2018.12.008
– volume: 24
  start-page: 336
  year: 2013
  ident: 2022121920304585700_CIT0011
  article-title: Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2012.11.004
– volume: 58
  start-page: 2369
  year: 2007
  ident: 2022121920304585700_CIT0037
  article-title: The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erm097
– volume: 77
  start-page: 269
  year: 2012
  ident: 2022121920304585700_CIT0054
  article-title: Natural variation in maize defense against insect herbivores
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
  doi: 10.1101/sqb.2012.77.014662
– volume: 41
  start-page: 1191
  year: 2014
  ident: 2022121920304585700_CIT0010
  article-title: Genomics for drought resistance-getting down to earth
  publication-title: Functional Plant Biology
  doi: 10.1071/FP14018
– volume: 167
  start-page: 1389
  year: 2015
  ident: 2022121920304585700_CIT0044
  article-title: Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.253328
– volume: 40
  start-page: 943
  year: 1989
  ident: 2022121920304585700_CIT0061
  article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments
  publication-title: Crop and Pasture Science
  doi: 10.1071/AR9890943
– volume: 156
  start-page: 1190
  year: 2011
  ident: 2022121920304585700_CIT0059
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.175489
– volume: 5
  start-page: e00310
  year: 2020
  ident: 2022121920304585700_CIT0073
  article-title: Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress
  publication-title: Plant Direct
  doi: 10.1002/pld3.310
– volume: 18
  start-page: 577
  year: 1986
  ident: 2022121920304585700_CIT0075
  article-title: Low temperature or low water potential effects on the mictobial decomposition of wheat residue
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(86)90078-7
– volume: 423
  start-page: 13
  year: 2017
  ident: 2022121920304585700_CIT0070
  article-title: Functional implications of root cortical senescence for soil resource capture
  publication-title: Plant and Soil
  doi: 10.1007/s11104-017-3533-1
– volume: 41
  start-page: 1579
  year: 2018
  ident: 2022121920304585700_CIT0030
  article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize
  publication-title: Plant Cell and Environment
  doi: 10.1111/pce.13197
– volume: 13
  start-page: 1
  year: 2022
  ident: 2022121920304585700_CIT0031
  article-title: Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2022.827369
– volume: 21
  start-page: 209
  year: 2016
  ident: 2022121920304585700_CIT0055
  article-title: Root-root interactions: towards a rhizosphere framework
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2016.01.009
– volume: 7
  year: 2017
  ident: 2022121920304585700_CIT0056
  article-title: Get tough, get toxic, or get a bodyguard: identifying candidate traits conferring belowground resistance to herbivores in grasses
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01925
– volume-title: Molecular genetic analysis of plant Mei2-like genes: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Biology
  year: 2002
  ident: 2022121920304585700_CIT0001
– volume: 62
  start-page: 59
  year: 2011
  ident: 2022121920304585700_CIT0006
  article-title: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erq350
– year: 2022
  ident: 2022121920304585700_CIT0009
  article-title: Root phenotypes as modulators of microbial microhabitats
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2022.1003868
– year: 2022
  ident: 2022121920304585700_CIT0064
  article-title: Characterization, costs, cues, and future perspectives of phenotypic plasticity
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcac087
– volume: 127
  start-page: 2293
  year: 2014
  ident: 2022121920304585700_CIT0014
  article-title: QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.)
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-014-2353-4
– volume: 38
  start-page: 179
  year: 2016
  ident: 2022121920304585700_CIT0083
  article-title: Hydraulic regulation strategies for whole-plant water balance of two maize inbred lines differing in drought resistance under short-term osmotic stress
  publication-title: Acta Physiologiae Plantarum
  doi: 10.1007/s11738-016-2199-2
– volume: 119
  start-page: e2201072119
  year: 2022
  ident: 2022121920304585700_CIT0038
  article-title: Ethylene inhibits rice root growth in compacted soil via ABA and auxin mediated mechanisms
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.2201072119
– volume: 118
  start-page: e2012087118
  year: 2021
  ident: 2022121920304585700_CIT0072
  article-title: Multiseriate cortical sclerenchyma enhance root penetration in compacted soils
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.2012087118
– volume: 73
  start-page: 128
  year: 2022
  ident: 2022121920304585700_CIT0079
  article-title: Different avenues for progress apply to drought tolerance, water use efficiency and yield in dry areas
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2021.07.019
– volume: 60
  start-page: 2845
  year: 2009
  ident: 2022121920304585700_CIT0085
  article-title: Physical effects of soil drying on roots and crop growth
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erp200
– volume: 56
  start-page: 197
  year: 2020
  ident: 2022121920304585700_CIT0004
  article-title: Climate change and the need for agricultural adaptation
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2019.12.006
– volume: 174
  start-page: 2333
  year: 2017
  ident: 2022121920304585700_CIT0066
  article-title: Root cortical senescence improves barley growth under suboptimal availability of N, P, and K
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.00648
– volume: 325
  start-page: 427
  year: 1997
  ident: 2022121920304585700_CIT0008
  article-title: Change in lignin content during litter decomposition in tropical forest soils (Congo): comparison of exotic plantations and native stands
  publication-title: Earth and Planetary Science
– volume: 30
  start-page: 580
  year: 2007
  ident: 2022121920304585700_CIT0076
  article-title: Trade-off between root porosity and mechanical strength in species with different types of aerenchyma
  publication-title: Plant Cell and Environment
  doi: 10.1111/j.1365-3040.2007.01639.x
– volume: 223
  start-page: 548
  year: 2019
  ident: 2022121920304585700_CIT0049
  article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture
  publication-title: New Phytologist
  doi: 10.1111/nph.15738
– year: 2020
  ident: 2022121920304585700_CIT0046
  article-title: Multiple integrated root phenotypes are associated with improved drought tolerance in maize.
  publication-title: Plant Physiology
  doi: 10.1104/pp.20.00211
– volume: 84
  start-page: 18
  year: 2005
  ident: 2022121920304585700_CIT0084
  article-title: Use of effective stress to predict the penetrometer resistance of unsaturated agricultural soils
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2004.08.003
– volume: 13
  start-page: e20003
  year: 2020
  ident: 2022121920304585700_CIT0065
  article-title: Genetic control of root anatomical plasticity in maize
  publication-title: Plant Genome
  doi: 10.1002/tpg2.20003
– volume: 9
  start-page: 314
  year: 2015
  ident: 2022121920304585700_CIT0074
  article-title: An expanded maize gene expression atlas based on RNA-sequencing and its use to explore root development
  publication-title: Plant Genome
– volume: 371
  start-page: 276
  year: 2021
  ident: 2022121920304585700_CIT0058
  article-title: Plant roots sense soil compaction through restricted ethylene diffusion
  publication-title: Science
  doi: 10.1126/science.abf3013
– volume: 20
  start-page: 103
  year: 2010
  ident: 2022121920304585700_CIT0027
  article-title: Comparative study of mycorrhizal susceptibility and anatomy of four palm species.
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-009-0266-x
– volume: 180
  start-page: 673
  year: 2008
  ident: 2022121920304585700_CIT0033
  article-title: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02573.x
– volume: 130
  start-page: 419
  year: 2017
  ident: 2022121920304585700_CIT0013
  article-title: Genome-wide association mapping and agronomic impact of cowpea root architecture
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-016-2823-y
– volume: 31
  start-page: 1121
  year: 2008
  ident: 2022121920304585700_CIT0029
  article-title: The role of nutrient efficient plants in improving crop yields in the twenty first century
  publication-title: Journal of Plant Nutrition
  doi: 10.1080/01904160802116068
– volume: 33
  start-page: 740
  year: 2010
  ident: 2022121920304585700_CIT0087
  article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.)
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2009.02099.x
– volume: 32
  start-page: 666
  year: 2009
  ident: 2022121920304585700_CIT0005
  article-title: Regulation and function of root exudates
  publication-title: Plant Cell and Environment
  doi: 10.1111/j.1365-3040.2009.01926.x
– year: 2022
  ident: 2022121920304585700_CIT0021
  article-title: Root and xylem anatomy varies with root length, root order, soil depth and environment in intermediate wheatgrass (Kernza®) and alfalfa
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcac058
– volume-title: Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: 2022121920304585700_CIT0040
  article-title: Climate change 2021: the physical science basis.
– volume: 43
  start-page: 1109
  year: 2017
  ident: 2022121920304585700_CIT0016
  article-title: A maize inbred exhibits resistance against western corn rootworm, Diabrotica virgifera virgifera
  publication-title: Journal of Chemical Ecology
  doi: 10.1007/s10886-017-0904-2
– volume: 180
  start-page: 2049
  year: 2019
  ident: 2022121920304585700_CIT0022
  article-title: Cortical cell diameter is key to energy costs of root growth in wheat
  publication-title: Plant Physiology
  doi: 10.1104/pp.19.00262
– volume: 97
  start-page: 15
  year: 1990
  ident: 2022121920304585700_CIT0062
  article-title: Anatomical characterization of western corn rootworm damage in adventitious roots of maize
  publication-title: Journal of the Iowa Academy of Sciences
– volume: 41
  start-page: 465
  year: 1987
  ident: 2022121920304585700_CIT0045
  article-title: Enzymatic “combustion”: the microbial degredation of lignin
  publication-title: Annual Review of Microbiology
  doi: 10.1146/annurev.mi.41.100187.002341
– volume: 166
  start-page: 1943
  year: 2014
  ident: 2022121920304585700_CIT0018
  article-title: Reduced root cortical cell file number improves drought tolerance in maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.249037
– volume: 45
  start-page: 837
  year: 2022
  ident: 2022121920304585700_CIT0069
  article-title: Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15)
  publication-title: Plant Cell and Environment
  doi: 10.1111/pce.14135
– volume: 45
  start-page: 595
  year: 2022
  ident: 2022121920304585700_CIT0003
  article-title: Root phenotypes for the future
  publication-title: Plant Cell and Environment
  doi: 10.1111/pce.14269
– volume: 34
  start-page: 33
  year: 2011
  ident: 2022121920304585700_CIT0060
  article-title: A root is a root is a root? Water uptake rates of Citrus root orders
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2010.02223.x
– volume: 11
  start-page: 1
  year: 2020
  ident: 2022121920304585700_CIT0071
  article-title: Should root plasticity be a crop breeding target?
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.00546
– volume: 39
  start-page: 1662
  year: 2016
  ident: 2022121920304585700_CIT0032
  article-title: Deep roots and soil structure
  publication-title: Plant Cell and Environment
  doi: 10.1111/pce.12684
– volume: 66
  start-page: 3151
  year: 2015
  ident: 2022121920304585700_CIT0019
  article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays)
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv121
– volume: 10
  year: 2019
  ident: 2022121920304585700_CIT0015
  article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli
  publication-title: Frontiers in Plant Science
– volume: 41
  start-page: 1199
  year: 2014
  ident: 2022121920304585700_CIT0081
  article-title: Strategies to increase the yield and yield stability of crops under drought - are we making progress?
  publication-title: Functional Plant Biology
  doi: 10.1071/FP14057
– volume: 182
  start-page: 707
  year: 2020
  ident: 2022121920304585700_CIT0035
  article-title: GRANAR, a computational tool to better understand the functional importance of monocotyledon root anatomy
  publication-title: Plant Physiology
  doi: 10.1104/pp.19.00617
– volume: 398
  start-page: 59
  year: 2015
  ident: 2022121920304585700_CIT0002
  article-title: Measurements of water uptake of maize roots: the key function of lateral roots
  publication-title: Plant and Soil
  doi: 10.1007/s11104-015-2639-6
– volume: 2
  start-page: 11
  year: 1980
  ident: 2022121920304585700_CIT0025
  article-title: Microbial degradation of lignin
  publication-title: Enzyme and Microbial Technology
  doi: 10.1016/0141-0229(80)90003-4
– volume-title: Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development
  year: 2006
  ident: 2022121920304585700_CIT0028
  doi: 10.1002/0470047380
– volume: 70
  start-page: 5327
  year: 2019
  ident: 2022121920304585700_CIT0077
  article-title: Laser ablation tomography for visualization of root colonization by edaphic organisms
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erz271
– volume: 65
  start-page: 6155
  year: 2014
  ident: 2022121920304585700_CIT0051
  article-title: Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru162
– volume: 11
  start-page: 1
  year: 2020
  ident: 2022121920304585700_CIT0067
  article-title: Spatio-temporal variation in water uptake in seminal and nodal root systems of barley plants grown in soil
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.01247
– year: 2021
  ident: 2022121920304585700_CIT0052
  article-title: Future roots for future soils
  publication-title: Plant Cell and Environment
– volume: 71
  start-page: 4243
  year: 2020
  ident: 2022121920304585700_CIT0082
  article-title: Root anatomical traits contribute to deeper rooting of maize (Zea mays L.) under compacted field conditions
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eraa165
– volume: 4
  start-page: 355
  year: 2013
  ident: 2022121920304585700_CIT0086
  article-title: Integration of root phenes for soil resource acquisition
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2013.00355
– volume: 16
  start-page: 1
  year: 2017
  ident: 2022121920304585700_CIT0080
  article-title: Root water uptake and ideotypes of the root system: whole-plant controls matter
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2017.05.0107
– volume: 43
  start-page: 114
  year: 2016
  ident: 2022121920304585700_CIT0023
  article-title: Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions
  publication-title: Functional Plant Biology
  doi: 10.1071/FP15194
– volume: 231
  start-page: 225
  year: 2021
  ident: 2022121920304585700_CIT0041
  article-title: Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis
  publication-title: New Phytologist
  doi: 10.1111/nph.17180
– volume: 11
  start-page: 516
  year: 2008
  ident: 2022121920304585700_CIT0026
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2008.01164.x
– volume: 179
  start-page: 236
  year: 2016
  ident: 2022121920304585700_CIT0034
  article-title: Conserved water use improves the yield performance of soybean
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2016.07.008
– volume: 40
  start-page: 1392
  year: 2017
  ident: 2022121920304585700_CIT0068
  article-title: Root cortical senescence decreases root respiration, nutrient content, and radial water and nutrient transport in barley
  publication-title: Plant Cell and Environment
  doi: 10.1111/pce.12933
– volume: 244
  start-page: 107612
  year: 2019
  ident: 2022121920304585700_CIT0012
  article-title: A case study on the efficacy of root phenotypic selection for edaphic stress tolerance in low-input agriculture: common bean breeding in Mozambique
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2019.107612
– volume: 67
  start-page: 386
  year: 2017
  ident: 2022121920304585700_CIT0039
  article-title: Agriculture in 2050: recalibrating targets for sustainable intensification
  publication-title: Bioscience
  doi: 10.1093/biosci/bix010
– volume: 35
  start-page: 186
  year: 2010
  ident: 2022121920304585700_CIT0042
  article-title: Below-ground herbivory and root toughness a potential model system using lignin-modified tobacco
  publication-title: Physiological Entomology
  doi: 10.1111/j.1365-3032.2010.00723.x
SSID ssj0000328640
Score 2.26002
SecondaryResourceType review_article
Snippet Abstract Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water...
Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage plac050
SubjectTerms Adaptation
Agriculture
Barley
Cell walls
Corn
Crop growth
Crop improvement
Crop resilience
Crops
Efficiency
Lignin
Microorganisms
Nutrient availability
Nutrient uptake
Pests
Phenotypes
Plant breeding
Plant sciences
Rhizosphere
Soil mechanics
Special Issue: Emerging Voices in Botany
Tensile strength
Water availability
Wheat
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELag5QAHBOWVUpBBSJyidfzOCbWoqwqJCiEq9RbZsU1X2ibLJj3039eTeMMuEnD2KI48Y8_488w3CH0otA9SWZcbJxRANyLXlpa5FVwJR2pJLQD6X8_l2QX_cikuE-DWpbTKzZk4HNSurQEjn7FCllxGh0c-rX7l0DUKXldTC437aD8ewTpevvZPTs-_fZ9QFmCLk5xMbI1sZlq7WpoZZDwRKLbf8kY7FW5bgeaf-ZJbDmj-BD1OkSM-HlX9FN3zzQF6dPxzndgz_AF6cNLGWO_2GVrOo7saUT682MoZx23AQwrhYHi9x_HuOYDZuIvfhMK_q9trg2Mgi7t2scTrBO7j2qxgCmwah6HpF3x13Q5c4_1zdDE__fH5LE99FfJaUNHnzOnAaCHjXYELwjzhBiINa6K_jxe-UBiu42JrQwOpQ1krRaSmTgsRfPCWsBdor2kb_wphqZkV1hppQsELxbSjzrGS1UBzKFiZoXyzvlWdSMeh98WyGh-_WTXqo0r6yNDHSX410m38VfJ9VNd_hY422qzS3uyq35aUoXfTcNxV8FRiGt_edBVVQkEsXPAMvRyVP03FJPRlL1WG1I5ZTALA2L070iyuBubuGPtRRdnhv3_rNXpIochiqHg8Qnv9-sa_iaFPb98m-74DMQwJkQ
  priority: 102
  providerName: ProQuest
Title Functional implications of multiseriate cortical sclerenchyma for soil resource capture and crop improvement
URI https://www.ncbi.nlm.nih.gov/pubmed/36545297
https://www.proquest.com/docview/3169460740
https://www.proquest.com/docview/2757161514
https://pubmed.ncbi.nlm.nih.gov/PMC9762723
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg44EXxDcdozIIiacwx44_8oAQQ60mpA2EVqlvkR3bWqWQlDaT1v-es5OGdgIh8ZIXnx3Fd8797nwfCL1NlfNCGptoy2Vw3fBEGZonhmeSW1IKaoJD__xCnM2yL3M-_x3_1G_g-o-mXegnNVtV729-bj7Cgf_QF0M60Y1ZVvokBDGRYL4fglaS4ZCe91A__pUZVSIjQ93G29P29NJertsO5LwdObmjiqYP0YMeQ-JPHdMfoTuufozunTaA8zZPUDUFVdV5-PBiJ14cNx7H8MEodK3DYHdGRzZewyoh6e9q80NjALF43SwqvOod-7jUy3DNgHVtcWj4FVZdNbHOePsUzaaTy89nSd9TISk55W3CrPKMpgLshIwT5kimA8owGnQ9GHs-1ZkSeaY09aT0eSklEYpaxbl33hnCnqGDuqndC4SFYoYbo4X2KWw4U5Zay3JWhhKHnOUjlGx3tCj7guOh70VVdBffrOg4UPQcGKF3A_2yK7XxV8o3wKB_Eh1v-VdsxapgKXycANgEw6-HYThR4ZpE1665XhdUchlwcJqN0POO3cOrmAg92XM5QnJPEAaCUK17f6ReXMWq3YD7qKTs6L9nvkT3aci9iImQx-igXV27V4CIWjNGdyWZjNHh6eTi2_dx9CuMo_jD8_Lr_BficxfW
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAk4ICgvQ4EFgThZsfdpHxBqoVFK2wihVurN7NprGinYIXGF8qf4jez4RYIEnHre0a7lmd15fwPwKoxsLpXJfJ0JhaEb4UeGxr4RXIksSCU1GNA_mcjxGf94Ls634GfXC4Nlld2bWD_UWZlijHzIQhlz6RRe8G7-3cepUZhd7UZoNGJxZFc_nMu2fHv4wfH3NaWjg9P3Y7-dKuCngorKZ1mUMxpKZylzETAbcI161min7Zy7k4eaR-6oSNM8SPM4VSqQEc0iIXKbWxMwt-812ObMuTID2N4_mHz63Ed1EJ1O8qBHh2RDXZr5TA-xwirA5v417bfRUbdm2P5Zn7mm8EZ34HZrqZK9RrTuwpYtduDW3tdFi9Zhd-D6fulsy9U9mI2cemyiimS6VqNOypzUJYu1oFeWOF-3Dp6TpdsTGw0vVt80cYYzWZbTGVm0yQSS6jkeQXSRERwyhrsuyhrbvLoPZ1fyxx_AoCgL-wiIjJgRxmip85CHikUZzTIWsxRhFQWLPfC7_5ukLcg5ztqYJU2ynSUNP5KWHx686ennDbzHXylfOnb9l2i342bSvgXL5LfkevCiX3a3GFMzurDl5TKhSii0vUPuwcOG-f1RTOIc-Fh5oDbEoidAhPDNlWJ6USOFO1uTKsoe__uznsON8enJcXJ8ODl6AjcpNnjU3Za7MKgWl_apM7sq86yVdQJfrvp6_QI7n0RE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+implications+of+multiseriate+cortical+sclerenchyma+for+soil+resource+capture+and+crop+improvement&rft.jtitle=AoB+plants&rft.au=Schneider%2C+Hannah+M&rft.date=2022-11-01&rft.pub=Oxford+University+Press&rft.eissn=2041-2851&rft.volume=14&rft.issue=6&rft_id=info:doi/10.1093%2Faobpla%2Fplac050&rft.externalDocID=PMC9762723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2851&client=summon