Functional implications of multiseriate cortical sclerenchyma for soil resource capture and crop improvement
Abstract Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted wit...
Saved in:
Published in | AoB plants Vol. 14; no. 6; p. plac050 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture.
Root traits play a primary role in plant adaption to stress. Multiseriate cortical sclerenchyma (MCS) is an anatomical trait characterized by small cells encrusted with lignin in the outer cortex. Progress has recently been achieved in understanding the development and physiological implications of MCS. This review proposes that MCS is a useful trait for water and nutrient acquisition, particularly in edaphic stress conditions. Multiseriate cortical sclerenchyma may be a useful breeding target for improved soil resource capture and biotic stress tolerance in several major crop species including wheat, maize, sorghum and barley. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 2041-2851 2041-2851 |
DOI: | 10.1093/aobpla/plac050 |