Induction of PGC-1α expression can be detected in blood samples of patients with ST-segment elevation acute myocardial infarction
Following acute myocardial infarction (MI), cardiomyocyte survival depends on its mitochondrial oxidative capacity. Cell death is normally followed by activation of the immune system. Peroxisome proliferator activated receptor γ-coactivator 1α (PGC-1α) is a transcriptional coactivator and a master r...
Saved in:
Published in | PloS one Vol. 6; no. 11; p. e26913 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
07.11.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Following acute myocardial infarction (MI), cardiomyocyte survival depends on its mitochondrial oxidative capacity. Cell death is normally followed by activation of the immune system. Peroxisome proliferator activated receptor γ-coactivator 1α (PGC-1α) is a transcriptional coactivator and a master regulator of cardiac oxidative metabolism. PGC-1α is induced by hypoxia and facilitates the recovery of the contractile capacity of the cardiac muscle following an artery ligation procedure. We hypothesized that PGC-1α activity could serve as a good molecular marker of cardiac recovery after a coronary event. The objective of the present study was to monitor the levels of PGC-1α following an ST-segment elevation acute myocardial infarction (STEMI) episode in blood samples of the affected patients. Analysis of blood mononuclear cells from human patients following an STEMI showed that PGC-1α expression was increased and the level of induction correlated with the infarct size. Infarct size was determined by LGE-CMR (late gadolinium enhancement on cardiac magnetic resonance), used to estimate the percentage of necrotic area. Cardiac markers, maximum creatine kinase (CK-MB) and Troponin I (TnI) levels, left ventricular ejection function (LVEF) and regional wall motion abnormalities (RWMA) as determined by echocardiography were also used to monitor cardiac injury. We also found that PGC-1α is present and active in mouse lymphocytes where its expression is induced upon activation and can be detected in the nuclear fraction of blood samples. These results support the notion that induction of PGC-1α expression can be part of the recovery response to an STEMI and could serve as a prognosis factor of cardiac recovery. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: M. Monsalve. Performed the experiments: OFA AT JE-E M. Mata FR-S. Analyzed the data: M. Monsalve OFA AT JE-E M. Mata FR-S. Wrote the paper: M. Monsalve OFA AT M. Mata JE-E FR-S. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0026913 |