Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer
Sorafenib, a tyrosine kinase inhibitor, has an important antitumor effect as a ferroptosis inducer in multiple cancers, including gastric cancer (GC). However, the status of sorafenib as a ferroptosis inducer has recently been questioned. There is very limited information about the relationship betw...
Saved in:
Published in | Redox biology Vol. 59; p. 102564 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Sorafenib, a tyrosine kinase inhibitor, has an important antitumor effect as a ferroptosis inducer in multiple cancers, including gastric cancer (GC). However, the status of sorafenib as a ferroptosis inducer has recently been questioned. There is very limited information about the relationship between ferroptosis and ATF2, and the role of ATF2 in sorafenib-induced ferroptosis has not been studied. In this study, we investigated the role and underlying molecular mechanisms of ATF2 in sorafenib-induced ferroptosis in GC. We found that ATF2 was significantly upregulated in GC tissues and predicted a poor clinical prognosis. Silencing ATF2 significantly inhibited the malignant phenotype of GC cells. In addition, we observed that ATF2 was activated during sorafenib-induced ferroptosis in GC cells. ATF2 knockdown promoted sorafenib-induced ferroptosis, while ATF2 overexpression showed the opposite results in GC cells. Using ChIP-Seq and RNA-Seq, we identified HSPH1 as a target of ATF2 and further validated it by ChIP‒qPCR analysis. HSPH1 can interact with SLC7A11 (cystine/glutamate transporter) and increase its protein stability. Importantly, knockdown of HSPH1 partly reversed the effects caused by ATF2 overexpression on sorafenib-induced ferroptosis in GC cells. In addition, the results from the tumor xenograft model showed that ATF2 knockdown can effectively enhance sorafenib sensitivity in vivo. Collectively, our study reveals a novel mechanism by which sorafenib induces ferroptosis in GC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2213-2317 2213-2317 |
DOI: | 10.1016/j.redox.2022.102564 |