Fibrin aggregation before sol-gel transition

Fibrinogen solutions (concentrations 2 mg/ml, 0.15-M Tris-NaCl buffer, pH 7.4) were incubated at 20 degrees C with quantities of reptilase or thrombin that were so small that the polymerization process could be followed for several hours by means of static and dynamic light scattering. The scattered...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 38; no. 2; pp. 123 - 132
Main Authors Wiltzius, P., Dietler, G., Känzig, W., Hofmann, V., Häberli, A., Straub, P.W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.1982
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fibrinogen solutions (concentrations 2 mg/ml, 0.15-M Tris-NaCl buffer, pH 7.4) were incubated at 20 degrees C with quantities of reptilase or thrombin that were so small that the polymerization process could be followed for several hours by means of static and dynamic light scattering. The scattered intensity and its correlation function were recorded at scattering angles between 30 degrees and 150 degrees. The measured data were compared with model calculations based on the Flory-Stockmayer distribution, which predicts a sol-gel phase transition. This distribution is characterized by a parameter, lambda, that indicates the extent of aggregation. lambda = 0 corresponds to the monomeric solution, and lambda = 1 indicates the sol-gel transition. Good agreement was found for monomeric units of 75-nm length aggregating (a) end-to-end in the early stage (0 less than or equal to lambda less than or equal to 0.3), and (b) in a staggered overlap pattern for the progressing polymerization (0.3 less than or equal to lambda less than 1). Before the gel point was reached, no systemic difference was observed between the data obtained after activation with thrombin which releases both fibrinopeptides A and B from fibrinogen, and reptilase, which exclusively releases the fibrinopeptides A. This confirms that the release of the fibrinopeptides A is the essential prerequisite for the aggregation process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(82)84539-6