Identification of the Genes Involved in 1-Deoxynojirimycin Synthesis in Bacillus subtilis MORI 3K-85

I-Deoxynojirimycin (DNJ), a D-glucose analogue with a nitrogen atom substituting for the ring oxygen, is a strong inhibitor of intestinal α-glucosidase. DNJ has several promising biological activities, including its antidiabetic, antitumor, and antiviral activities. Nevertheless, only limited amount...

Full description

Saved in:
Bibliographic Details
Published inThe journal of microbiology Vol. 49; no. 3; pp. 431 - 440
Main Authors Kang, K.D., Biotopia Co., Ltd., Chuncheon, Republic of Korea, Cho, Y.S., Biotopia Co., Ltd., Chuncheon, Republic of Korea, Song, J.H., Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea, Park, Y.S., Biotopia Co., Ltd., Chuncheon, Republic of Korea, Lee, J.Y., Biotopia Co., Ltd., Chuncheon, Republic of Korea, Hwang, K.Y., Biotopia Co., Ltd., Chuncheon, Republic of Korea, Rhee, S.K., Soonchunhyang University, Asan, Republic of Korea, Chung, J.H., Yonsei University College of Medicine, Seoul, Republic of Korea, Kwon, O.S., Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea, Seong, S.I., Biotopia Co., Ltd., Chuncheon, Republic of Korea
Format Journal Article
LanguageEnglish
Published Heidelberg The Microbiological Society of Korea 01.06.2011
Springer Nature B.V
한국미생물학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:I-Deoxynojirimycin (DNJ), a D-glucose analogue with a nitrogen atom substituting for the ring oxygen, is a strong inhibitor of intestinal α-glucosidase. DNJ has several promising biological activities, including its antidiabetic, antitumor, and antiviral activities. Nevertheless, only limited amounts of DNJ are available because it can only be extracted from some higher plants, including the mulberry tree, or purified from the culture broth of several types of soil bacteria, such as Streptomyces sp. and Bacillus sp. In our previous study, a DNJ-producing bacterium, Bacillus subtilis MORI, was isolated from the traditional Korean fermented food Chungkookjang. In the present study, we report the identification of the DNJ biosynthetic genes in B. subtilis MORE 3K-85 strain, a DJ-overproducing derivate of the B. subtilis MORI strain generated by γ-irradiation. The genomic DNA library of B. subtilis MORI 3K-85 was constructed in Escherichia coil, and clones showing α-glucosidase inhibition activity were selected. After DNA sequencing and a series of subcloning, we were able to identify a putative operon which consists of gabT1, yktc1, and gutB1 genes predicted to encode putative transaminase, phosphatase, and oxidoreductase, respectively. When a recombinant plasmid containing this operon sequence was transformed into an E. coli strain, the resulting transformant was able to produce DNJ into the culture medium. Our results indicate that the gabT1, yktc1, and gutB1 genes are involved in the DNJ biosynthetic pathway in B. subtilis MORI, suggesting the possibility of employing these genes to establish a large-scale microbial DNJ overproduction system through genetic engineering and process optimization.
Bibliography:2012000361
A50
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
G704-000121.2011.49.3.027
ISSN:1225-8873
1976-3794
DOI:10.1007/s12275-011-1238-3