Hybrid Time-Scale Optimal Scheduling Considering Multi-Energy Complementary Characteristic

Evaluating the potential utilization of hybrid energy systems and determining the multi-scale optimal operation strategy is critical to power system planning in the context of energy structure adjustment, especially for large-scale hybrid energy systems. Considering the long-term and short-term comp...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 94087 - 94098
Main Authors Wang, Songkai, Jia, Rong, Shi, Xiaoyu, An, Yuan, Huang, Qiang, Guo, Pengcheng, Luo, Chang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Evaluating the potential utilization of hybrid energy systems and determining the multi-scale optimal operation strategy is critical to power system planning in the context of energy structure adjustment, especially for large-scale hybrid energy systems. Considering the long-term and short-term complementary characteristics, this paper puts forward a coordinated optimization framework for the integrated energy system in the world's largest multi-energy complementary base on Yellow River's upper reaches. The main procedures are as follows: 1) cross-correlation method is introduced for individually analyzing the long- and short-term complementary characteristics of wind power, photovoltaic, and hydropower in this multi-energy complementary base; 2) a double-layer model combining the long-term optimal operation model and short-term optimal operation model for determining the proportion of multiple energy and optimizing the maximum peak-shaving ability; 3) Large-Scale System Decomposition-Coordination Method is applied for solving the proposed double-layer operation model. The results show that wind power 23%, photovoltaic 35%, hydropower 42% can keep the most stable generation in the long-term complementary operation. This proportion results can improve the system peak regulation capacity with 50.8% (sunny day's morning peak) and 24.2% (rainy day's morning peak) in the optimal short-term operation.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3093906