New algorithm for valganciclovir dosing in pediatric solid organ transplant recipients

CMV infections are common after SOT. v‐GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms. Data from 104 pediatric SOT recipients (kidney, liver, and heart) aged 0.3–16.9 yr and receiving v‐GCV once a day were used for model development and v...

Full description

Saved in:
Bibliographic Details
Published inPediatric transplantation Vol. 18; no. 1; pp. 103 - 111
Main Authors Åsberg, A., Bjerre, A., Neely, M.
Format Journal Article
LanguageEnglish
Published Denmark Blackwell Publishing Ltd 01.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CMV infections are common after SOT. v‐GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms. Data from 104 pediatric SOT recipients (kidney, liver, and heart) aged 0.3–16.9 yr and receiving v‐GCV once a day were used for model development and validation with the Pmetrics package for R. Monte Carlo simulations were performed to compare the probability of a GCV AUC 40–60 mg*h/L with the different algorithms across a range of ages, weights, and GFRs. GCV pharmacokinetics was well described by the non‐parametric model. Clearance was dependent on GFR and Cockcroft‐Gault estimates improved the model fit over Schwartz. Simulations showed that our new algorithm, where v‐GCV dose is: Weight [kg]*(0.07*GFR [mL/min]+k), where k = 5 for GFR ≤ 30 mL/min, k = 10 for GFR > 30 mL/min and weight > 30 kg and k = 15 for GFR > 30 mL/min and weight ≤ 30 kg, outperformed the other algorithms. Thirty‐three percent of all patients achieve an exposure above and 21% within the therapeutic window. We propose a simple algorithm for initial v‐GCV dosing that standardizes plasma drug exposure better than current algorithms. Subsequent TDM is strongly suggested to achieve individual drug levels within the therapeutic window.
AbstractList CMV infections are common after SOT. v-GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms. Data from 104 pediatric SOT recipients (kidney, liver, and heart) aged 0.3–16.9 yr and receiving v-GCV once a day were used for model development and validation with the Pmetrics package for R. Monte Carlo simulations were performed to compare the probability of a GCV AUC 40–60 mg*h/L with the different algorithms across a range of ages, weights, and GFRs. GCV pharmacokinetics was well described by the non-parametric model. Clearance was dependent on GFR and Cockcroft-Gault estimates improved the model fit over Schwartz. Simulations showed that our new algorithm, where v-GCV dose is: Weight [kg]*(0.07*GFR [mL/min]+ k ), where k = 5 for GFR ≤ 30 mL/min, k = 10 for GFR > 30 mL/min and weight > 30 kg and k = 15 for GFR > 30 mL/min and weight ≤ 30 kg, outperformed the other algorithms. Thirty-three percent of all patients achieve an exposure above and 21% within the therapeutic window. We propose a simple algorithm for initial v-GCV dosing that standardizes plasma drug exposure better than current algorithms. Subsequent TDM is strongly suggested to achieve individual drug levels within the therapeutic window.
Abstract CMV infections are common after SOT . v‐ GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms. Data from 104 pediatric SOT recipients (kidney, liver, and heart) aged 0.3–16.9 yr and receiving v‐ GCV once a day were used for model development and validation with the Pmetrics package for R. Monte Carlo simulations were performed to compare the probability of a GCV AUC 40–60 mg*h/L with the different algorithms across a range of ages, weights, and GFR s. GCV pharmacokinetics was well described by the non‐parametric model. Clearance was dependent on GFR and Cockcroft‐Gault estimates improved the model fit over Schwartz. Simulations showed that our new algorithm, where v‐GCV dose is: Weight [kg]*(0.07*GFR [mL/min]+ k ), where k  =   5 for GFR ≤ 30 mL/min, k  =   10 for GFR > 30 mL/min and weight > 30 kg and k  =   15 for GFR > 30 mL/min and weight ≤ 30 kg, outperformed the other algorithms. Thirty‐three percent of all patients achieve an exposure above and 21% within the therapeutic window. We propose a simple algorithm for initial v‐ GCV dosing that standardizes plasma drug exposure better than current algorithms. Subsequent TDM is strongly suggested to achieve individual drug levels within the therapeutic window.
CMV infections are common after SOT. v-GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms. Data from 104 pediatric SOT recipients (kidney, liver, and heart) aged 0.3-16.9 yr and receiving v-GCV once a day were used for model development and validation with the Pmetrics package for R. Monte Carlo simulations were performed to compare the probability of a GCV AUC 40-60 mg*h/L with the different algorithms across a range of ages, weights, and GFRs. GCV pharmacokinetics was well described by the non-parametric model. Clearance was dependent on GFR and Cockcroft-Gault estimates improved the model fit over Schwartz. Simulations showed that our new algorithm, where v-GCV dose is: Weight [kg]*(0.07*GFR [mL/min]+k), where k = 5 for GFR ≤ 30 mL/min, k = 10 for GFR > 30 mL/min and weight > 30 kg and k = 15 for GFR > 30 mL/min and weight ≤ 30 kg, outperformed the other algorithms. Thirty-three percent of all patients achieve an exposure above and 21% within the therapeutic window. We propose a simple algorithm for initial v-GCV dosing that standardizes plasma drug exposure better than current algorithms. Subsequent TDM is strongly suggested to achieve individual drug levels within the therapeutic window.
CMV infections are common after SOT. v‐GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms. Data from 104 pediatric SOT recipients (kidney, liver, and heart) aged 0.3–16.9 yr and receiving v‐GCV once a day were used for model development and validation with the Pmetrics package for R. Monte Carlo simulations were performed to compare the probability of a GCV AUC 40–60 mg*h/L with the different algorithms across a range of ages, weights, and GFRs. GCV pharmacokinetics was well described by the non‐parametric model. Clearance was dependent on GFR and Cockcroft‐Gault estimates improved the model fit over Schwartz. Simulations showed that our new algorithm, where v‐GCV dose is: Weight [kg]*(0.07*GFR [mL/min]+k), where k = 5 for GFR ≤ 30 mL/min, k = 10 for GFR > 30 mL/min and weight > 30 kg and k = 15 for GFR > 30 mL/min and weight ≤ 30 kg, outperformed the other algorithms. Thirty‐three percent of all patients achieve an exposure above and 21% within the therapeutic window. We propose a simple algorithm for initial v‐GCV dosing that standardizes plasma drug exposure better than current algorithms. Subsequent TDM is strongly suggested to achieve individual drug levels within the therapeutic window.
Author Åsberg, A.
Neely, M.
Bjerre, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Åsberg
  fullname: Åsberg, A.
  email: Prof. Anders Åsberg, Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, NorwayTel.: +47 22 85 65 59Fax: +47 22 85 44 02, anders.asberg@farmasi.uio.no
  organization: Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
– sequence: 2
  givenname: A.
  surname: Bjerre
  fullname: Bjerre, A.
  organization: Department of Pediatrics, Oslo University Hospital-Rikshospitalet, Oslo, Norway
– sequence: 3
  givenname: M.
  surname: Neely
  fullname: Neely, M.
  organization: Laboratory of Applied Pharmacokinetics, University of Southern California, CA, Los Angeles, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24152053$$D View this record in MEDLINE/PubMed
BookMark eNp9kElLBDEQhYMo7hd_gOQstGbr7SKIjI6oo4jLMWTSlTHakzRJO-q_Nzo66MVcUkW991XxNtCy8w4Q2qFkn6Z30EEf9imjZb2E1imv64wTUSx_1WXGqWBraCPGJ0JoISqxitaYoDkjOV9H9yN4xaqd-GD7xyk2PuBZapXTVrd-ZgNufLRugq3DHTRW9cFqHH1rG-xD0uE-KBe7VrkeB9C2s-D6uIVWjGojbH__m-juZHB7PMwurk7Pjo8uMp0zUWesSMeVwBXLx7rSCirgwCtdN1QITQwTVUGbXDEjdG7GpqA6VY022igQNfBNdDjndi_jKTQ67Q6qlV2wUxXepVdW_p04-ygnfiZ5VZGC5gmwNwfo4GMMYBZeSuRnuvIzXfmVbhLv_t62kP7EmQR0Lni1Lbz_g5LXg9ubH2g299jYw9vCo8KzLEpe5vJhdCpH5-SyHtKhLPgH4daaSQ
CitedBy_id crossref_primary_10_1007_s40262_024_01362_7
crossref_primary_10_1002_jcph_1735
crossref_primary_10_1007_s00280_016_3071_1
crossref_primary_10_1093_jac_dkab419
crossref_primary_10_1111_petr_14494
crossref_primary_10_1128_aac_01597_22
crossref_primary_10_1093_jpids_piw008
crossref_primary_10_1111_bcp_14719
crossref_primary_10_1111_ctr_13369
crossref_primary_10_1007_s11908_015_0511_8
crossref_primary_10_1080_14787210_2021_1851193
crossref_primary_10_1111_petr_13865
crossref_primary_10_1182_blood_2019000956
crossref_primary_10_1007_s40262_021_01034_w
crossref_primary_10_1128_AAC_02254_20
crossref_primary_10_1016_j_transproceed_2020_01_163
crossref_primary_10_1097_QCO_0000000000000965
crossref_primary_10_1111_tid_12456
crossref_primary_10_1517_17425255_2015_988139
crossref_primary_10_1080_17512433_2023_2181161
crossref_primary_10_1111_petr_12816
crossref_primary_10_1097_FTD_0000000000000925
crossref_primary_10_1128_AAC_00075_18
crossref_primary_10_1097_TP_0000000000002632
crossref_primary_10_1097_INF_0000000000001595
crossref_primary_10_1111_petr_13750
crossref_primary_10_1016_j_trre_2016_04_001
crossref_primary_10_1097_QCO_0000000000000174
crossref_primary_10_1002_psp4_12038
crossref_primary_10_1111_petr_13276
crossref_primary_10_1097_MOT_0000000000000121
crossref_primary_10_1002_psp4_12363
crossref_primary_10_1016_j_transproceed_2017_02_046
crossref_primary_10_1128_AAC_01192_19
crossref_primary_10_1097_FTD_0000000000001050
crossref_primary_10_1186_s12879_021_06828_8
crossref_primary_10_1002_jcph_650
crossref_primary_10_1007_s10157_021_02020_z
crossref_primary_10_1097_TP_0000000000002191
crossref_primary_10_15825_1995_1191_2016_1_67_77
crossref_primary_10_1097_TP_0000000000000888
crossref_primary_10_1097_INF_0000000000001317
crossref_primary_10_1111_jcpt_13051
crossref_primary_10_1002_cpt_2431
Cites_doi 10.1517/14656561003742954
10.1007/s11908-012-0292-2
10.1111/j.1399-3062.2009.00478.x
10.2133/dmpk.24.25
10.1016/j.jpba.2006.08.022
10.1128/AAC.05634-11
10.1159/000180580
10.1007/s10928-005-0034-2
10.1038/ki.2012.388
10.1111/j.1600-6143.2008.02528.x
10.1097/TP.0b013e31829df29d
10.1016/S0022-3476(84)80479-5
10.1097/FTD.0b013e31825c4ba6
10.1111/j.1600-6143.2010.03074.x
10.1111/j.1600-6143.2004.00382.x
10.1097/01.TP.0000164512.99703.AD
10.1111/petr.12030
10.1128/AAC.44.10.2811-2815.2000
10.1111/j.1600-6143.2007.01910.x
ContentType Journal Article
Copyright 2013 The Authors. Pediatric Transplantation published by John Wiley & Sons A/S.
2013 The Authors. Pediatric Transplantation published by John Wiley & Sons A/S. 2013
Copyright_xml – notice: 2013 The Authors. Pediatric Transplantation published by John Wiley & Sons A/S.
– notice: 2013 The Authors. Pediatric Transplantation published by John Wiley & Sons A/S. 2013
DBID BSCLL
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1111/petr.12179
DatabaseName Istex
Wiley-Blackwell Titles (Open access)
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1399-3046
EndPage 111
ExternalDocumentID 10_1111_petr_12179
24152053
PETR12179
ark_67375_WNG_NK0M9H1H_6
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01 GM068968; HD070996
– fundername: NIGMS NIH HHS
  grantid: R01 GM068968
– fundername: NICHD NIH HHS
  grantid: R01 HD070886
– fundername: NICHD NIH HHS
  grantid: HD070996
– fundername: NICHD NIH HHS
  grantid: R01 HD070996
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
24P
AITYG
HGLYW
OIG
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c5249-261427e3a25bc8cae8e3e38c9d144c0f24861d5a2f4c5fbf61cf4cdcfcfae49e3
IEDL.DBID 24P
ISSN 1397-3142
IngestDate Tue Sep 17 21:20:15 EDT 2024
Fri Aug 23 02:48:40 EDT 2024
Thu May 23 23:19:25 EDT 2024
Sat Aug 24 00:54:09 EDT 2024
Wed Jan 17 05:01:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords valganciclovir
population model
solid organ transplantation
pediatric transplantation
cytomegalovirus
therapeutic drug monitoring
Language English
License Attribution-NonCommercial
2013 The Authors. Pediatric Transplantation published by John Wiley & Sons A/S.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5249-261427e3a25bc8cae8e3e38c9d144c0f24861d5a2f4c5fbf61cf4cdcfcfae49e3
Notes National Institutes of Health - No. R01 GM068968; No. HD070996
ArticleID:PETR12179
ark:/67375/WNG-NK0M9H1H-6
istex:4A83C4714D97DA61DD23C0C90E1193A5ED381BE5
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpetr.12179
PMID 24152053
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3880615
crossref_primary_10_1111_petr_12179
pubmed_primary_24152053
wiley_primary_10_1111_petr_12179_PETR12179
istex_primary_ark_67375_WNG_NK0M9H1H_6
PublicationCentury 2000
PublicationDate February 2014
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
– name: Oxford, UK
PublicationTitle Pediatric transplantation
PublicationTitleAlternate Pediatr Transplantation
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976: 16: 31-41.
Åsberg A, Humar A, Rollag H, et al. Oral valganciclovir is noninferior to intravenous ganciclovir for the treatment of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant 2007: 7: 2106-2113.
Pescovitz MD, Ettenger RB, Strife CF, et al. Pharmacokinetics of oral valganciclovir solution and intravenous ganciclovir in pediatric renal and liver transplant recipients. Transpl Infect Dis 2010: 12: 195-203.
Kotton CN, Kumar D, Caliendo AM, et al. Updated international consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation 2013: 96: 333-360.
Wiltshire H, Paya CV, Pescovitz MD, et al. Pharmacodynamics of oral ganciclovir and valganciclovir in solid organ transplant recipients. Transplantation 2005: 79: 1477-1483.
Vaudry W, Ettenger R, Jara P, et al. Valganciclovir dosing according to body surface area and renal function in pediatric solid organ transplant recipients. Am J Transplant 2009: 9: 636-643.
Åsberg A, Hansen CN, Reubsaet L. Determination of ganciclovir in different matrices from solid organ transplanted patients treated with a wide range of concomitant drugs. J Pharm Biomed Anal 2007: 43: 1039-1044.
World Health Organization. The WHO Child Growth Standards. Available at: http://www.who.int/childgrowth/en/.
Villeneuve D, Brothers A, Harvey E, et al. Valganciclovir dosing using area under the curve calculations in pediatric solid organ transplant recipients. Pediatr Transplant 2013: 17: 80-85.
Paya C, Humar A, Dominguez E, et al. Efficacy and safety of valganciclovir vs. oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant 2004: 4: 611-620.
Charhon N, Neely MN, Bourguignon L, Maire P, Jelliffe RW, Goutelle S. Comparison of four renal function estimation equations for pharmacokinetic modeling of gentamicin in geriatric patients. Antimicrob Agents Chemother 2012: 56: 1862-1869.
Humar A, Lebranchu Y, Vincenti F, et al. The efficacy and safety of 200 days valganciclovir cytomegalovirus prophylaxis in high-risk kidney transplant recipients. Am J Transplant 2010: 10: 1228-1237.
Åsberg A, Rollag H, Hartmann A. Valganciclovir for the prevention and treatment of CMV in solid organ transplant recipients. Expert Opin Pharmacother 2010: 11: 1159-1166.
Pescovitz MD, Rabkin J, Merion RM, et al. Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients. Antimicrob Agents Chemother 2000: 44: 2811-2815.
Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 1984: 104: 849-854.
Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW. Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther Drug Monit 2012: 34: 467-476.
Beam E, Razonable RR. Cytomegalovirus in solid organ transplantation: Epidemiology, prevention, and treatment. Curr Infect Dis Rep 2012: 14: 633-641.
Gao A, Cachat F, Faouzi M, et al. Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula. Kidney Int 2013: 83: 524-530.
Duffull S, Waterhouse T, Eccleston J. Some considerations on the design of population pharmacokinetic studies. J Pharmacokinet Pharmacodyn 2005: 32: 441-457.
Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 2009: 24: 25-36.
2010; 12
2010; 11
2010; 10
2009; 24
2013; 17
2000; 44
2013; 83
2013; 96
1984; 104
2004; 4
2009; 9
2007; 7
2005; 32
2012; 14
2007; 43
2012; 34
1976; 16
2012; 56
2005; 79
6726515 - J Pediatr. 1984 Jun;104(6):849-54
22992839 - Curr Infect Dis Rep. 2012 Dec;14(6):633-41
1244564 - Nephron. 1976;16(1):31-41
16284917 - J Pharmacokinet Pharmacodyn. 2005 Aug;32(3-4):441-57
15940035 - Transplantation. 2005 Jun 15;79(11):1477-83
22722776 - Ther Drug Monit. 2012 Aug;34(4):467-76
23254901 - Kidney Int. 2013 Mar;83(3):524-30
19252334 - Drug Metab Pharmacokinet. 2009;24(1):25-36
20367273 - Expert Opin Pharmacother. 2010 May;11(7):1159-66
15023154 - Am J Transplant. 2004 Apr;4(4):611-20
10991864 - Antimicrob Agents Chemother. 2000 Oct;44(10):2811-5
23240598 - Pediatr Transplant. 2013 Feb;17(1):80-5
17034976 - J Pharm Biomed Anal. 2007 Feb 19;43(3):1039-44
19260840 - Am J Transplant. 2009 Mar;9(3):636-43
17640310 - Am J Transplant. 2007 Sep;7(9):2106-13
22290966 - Antimicrob Agents Chemother. 2012 Apr;56(4):1862-9
20002356 - Transpl Infect Dis. 2010 Jun;12(3):195-203
20353469 - Am J Transplant. 2010 May;10(5):1228-37
23896556 - Transplantation. 2013 Aug 27;96(4):333-60
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
World Health Organization (e_1_2_8_20_1)
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_23_1
References_xml – volume: 11
  start-page: 1159
  year: 2010
  end-page: 1166
  article-title: Valganciclovir for the prevention and treatment of CMV in solid organ transplant recipients
  publication-title: Expert Opin Pharmacother
– volume: 96
  start-page: 333
  year: 2013
  end-page: 360
  article-title: Updated international consensus guidelines on the management of cytomegalovirus in solid organ transplantation
  publication-title: Transplantation
– volume: 34
  start-page: 467
  year: 2012
  end-page: 476
  article-title: Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R
  publication-title: Ther Drug Monit
– volume: 56
  start-page: 1862
  year: 2012
  end-page: 1869
  article-title: Comparison of four renal function estimation equations for pharmacokinetic modeling of gentamicin in geriatric patients
  publication-title: Antimicrob Agents Chemother
– volume: 10
  start-page: 1228
  year: 2010
  end-page: 1237
  article-title: The efficacy and safety of 200 days valganciclovir cytomegalovirus prophylaxis in high‐risk kidney transplant recipients
  publication-title: Am J Transplant
– volume: 43
  start-page: 1039
  year: 2007
  end-page: 1044
  article-title: Determination of ganciclovir in different matrices from solid organ transplanted patients treated with a wide range of concomitant drugs
  publication-title: J Pharm Biomed Anal
– volume: 4
  start-page: 611
  year: 2004
  end-page: 620
  article-title: Efficacy and safety of valganciclovir vs. oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients
  publication-title: Am J Transplant
– volume: 83
  start-page: 524
  year: 2013
  end-page: 530
  article-title: Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula
  publication-title: Kidney Int
– volume: 104
  start-page: 849
  year: 1984
  end-page: 854
  article-title: A simple estimate of glomerular filtration rate in full‐term infants during the first year of life
  publication-title: J Pediatr
– volume: 9
  start-page: 636
  year: 2009
  end-page: 643
  article-title: Valganciclovir dosing according to body surface area and renal function in pediatric solid organ transplant recipients
  publication-title: Am J Transplant
– volume: 79
  start-page: 1477
  year: 2005
  end-page: 1483
  article-title: Pharmacodynamics of oral ganciclovir and valganciclovir in solid organ transplant recipients
  publication-title: Transplantation
– volume: 17
  start-page: 80
  year: 2013
  end-page: 85
  article-title: Valganciclovir dosing using area under the curve calculations in pediatric solid organ transplant recipients
  publication-title: Pediatr Transplant
– volume: 12
  start-page: 195
  year: 2010
  end-page: 203
  article-title: Pharmacokinetics of oral valganciclovir solution and intravenous ganciclovir in pediatric renal and liver transplant recipients
  publication-title: Transpl Infect Dis
– volume: 24
  start-page: 25
  year: 2009
  end-page: 36
  article-title: Mechanistic basis of using body size and maturation to predict clearance in humans
  publication-title: Drug Metab Pharmacokinet
– volume: 16
  start-page: 31
  year: 1976
  end-page: 41
  article-title: Prediction of creatinine clearance from serum creatinine
  publication-title: Nephron
– volume: 14
  start-page: 633
  year: 2012
  end-page: 641
  article-title: Cytomegalovirus in solid organ transplantation: Epidemiology, prevention, and treatment
  publication-title: Curr Infect Dis Rep
– volume: 44
  start-page: 2811
  year: 2000
  end-page: 2815
  article-title: Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients
  publication-title: Antimicrob Agents Chemother
– volume: 7
  start-page: 2106
  year: 2007
  end-page: 2113
  article-title: Oral valganciclovir is noninferior to intravenous ganciclovir for the treatment of cytomegalovirus disease in solid organ transplant recipients
  publication-title: Am J Transplant
– volume: 32
  start-page: 441
  year: 2005
  end-page: 457
  article-title: Some considerations on the design of population pharmacokinetic studies
  publication-title: J Pharmacokinet Pharmacodyn
– ident: e_1_2_8_2_1
  doi: 10.1517/14656561003742954
– ident: e_1_2_8_3_1
  doi: 10.1007/s11908-012-0292-2
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1399-3062.2009.00478.x
– ident: e_1_2_8_17_1
  doi: 10.2133/dmpk.24.25
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jpba.2006.08.022
– ident: e_1_2_8_21_1
  doi: 10.1128/AAC.05634-11
– ident: e_1_2_8_16_1
– ident: e_1_2_8_18_1
  doi: 10.1159/000180580
– ident: e_1_2_8_22_1
  doi: 10.1007/s10928-005-0034-2
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1399-3062.2009.00478.x
– ident: e_1_2_8_19_1
  doi: 10.1038/ki.2012.388
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1600-6143.2008.02528.x
– ident: e_1_2_8_4_1
  doi: 10.1097/TP.0b013e31829df29d
– ident: e_1_2_8_11_1
  doi: 10.1016/S0022-3476(84)80479-5
– ident: e_1_2_8_15_1
  doi: 10.1097/FTD.0b013e31825c4ba6
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1600-6143.2010.03074.x
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1600-6143.2004.00382.x
– ident: e_1_2_8_9_1
  doi: 10.1097/01.TP.0000164512.99703.AD
– ident: e_1_2_8_12_1
  doi: 10.1111/petr.12030
– volume-title: The WHO Child Growth Standards
  ident: e_1_2_8_20_1
  contributor:
    fullname: World Health Organization
– ident: e_1_2_8_5_1
  doi: 10.1128/AAC.44.10.2811-2815.2000
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1600-6143.2007.01910.x
SSID ssj0016484
Score 2.2783284
Snippet CMV infections are common after SOT. v‐GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms. Data from...
CMV infections are common after SOT. v-GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms. Data from...
Abstract CMV infections are common after SOT . v‐ GCV is increasingly used in children. The aim of this study was to evaluate presently used dosing algorithms....
SourceID pubmedcentral
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103
SubjectTerms Adolescent
Algorithms
Antiviral Agents - administration & dosage
Area Under Curve
Child
Child, Preschool
Computer Simulation
cytomegalovirus
Cytomegalovirus Infections - drug therapy
Drug Monitoring - methods
Female
Ganciclovir - administration & dosage
Ganciclovir - analogs & derivatives
Glomerular Filtration Rate
Humans
Infant
Male
Models, Theoretical
Monte Carlo Method
Organ Transplantation - methods
Original
pediatric transplantation
population model
Probability
solid organ transplantation
therapeutic drug monitoring
valganciclovir
Title New algorithm for valganciclovir dosing in pediatric solid organ transplant recipients
URI https://api.istex.fr/ark:/67375/WNG-NK0M9H1H-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpetr.12179
https://www.ncbi.nlm.nih.gov/pubmed/24152053
https://pubmed.ncbi.nlm.nih.gov/PMC3880615
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5SB0ovJY8-1DRloSWHgMCWRi_IJaROTIKNMUmam9iXahNHNrZr-vMzs7IVu4dCdBALOwLx7eub3dlvAH7ENgnJ9Wn5SmLsY2ikn6WI5PNYEyvVVMYlg-n24s4dXj9EDztwtr4LU-lD1BtuPDLcfM0DXKr5xiAnUjljbYQkewO7xGtS7tMB9uszhBjTKqVtxjtxGKzESTmO5-XbreVol5H9u7EW_Rsnuclf3QJ0uQfvV8xRnFdNvQ87tjyAt93V2fgh3NN8JeT494Tc_eGTIDIqlnxRo9RkP1mOZsJMeGNAjEoxXSfoENT1Rka43E5i4YTOx4S1YM2LKV-VnH-Au8v27UXHX2VN8HVEvpRPLhEGiQ1lECmdamlTG9ow1Zkh30k3iwDTuGUiGRSoo0IVcUtTyehCF9JiZsOP0Cgnpf0Mwig-dkXH6RBlISODyOqSWkWKHg--r8HLp5U4Rr52Khji3EHswYnDtTaRs0cOJ0ui_FfvKu_dNLtZp9XJYw8-VXjXlo5e0DThQbLVErUBi2Nv15SjoRPJZpEbYmsenLo2-8__5f327cCVvrzG-AjeEXnCKoL7KzQWsz_2mAjKQn1z_ZDePwfBM1bg5K8
link.rule.ids 230,315,786,790,891,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5SB9peSpO-1LTJQkIOBYEtjV7HEuIqcWxCcJrcxL6UmLqycd3Qn9-ZlazaORSi04JGIGZ2dr-Znf0G4Ci2SUihT89XEmMfQyP9LEWkmMeaWKmuMq4ZzHAU59d4fhvdNrU5fBem5odoE27sGW69ZgfnhPSalxOqXDA5QpI9g21u6c1-GeBle4gQY1r3tM04FYdBw07KhTz_vt3Yj7ZZtX_WNqPHhZLrANbtQP3X8KqBjuJrbesd2LLVLjwfNofjb-A7LVhCTu9mFO_f_xSERsUD39SoNMnPHiYLYWacGRCTSsxXHToEzb2JEa65k1g6pvMpKVsw6cWc70r-egvX_dPxSe43bRN8HVEw5VNMhEFiQxlESqda2tSGNkx1Zih40t0ywDTumUgGJeqoVGXc0zQyutSltJjZ8B10qlllP4Awis9d0YE6RFnKyCAyvaRWkaLHg8OV8op5zY5RrKIKVnHhVOzBsdNrKyIXP7ieLImKm9G3YjToDrO8lxexB-9rfbeSDl_QOuFBsmGJVoDZsTffVJN7x5LNLDcE1zz44mz2n_8rLk_HV2708SnCB_AiHw8viouz0WAPXhKSwrqc-xN0lovf9jOhlaXad3PyLy565yc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC8UXrd_RqguKD0LKXTL5Al-K7Xla7yil1b5I2K_Y0Jo7YlrEv74zm0u864OgeVrIBDYzs7u_2Z39DcDr2CYhhT5DX0mMfQyN9LMUkWIea2KlBsq4YjCTaTw-wU-n0ekavOvuwrT8EP2GG48MN1_zAJ-bYmmQE6ismRshyW7BBsZhwD69d9STR1EckLYlbTPeicNgQU7KeTx_vl1ZjjZYs7-W1qKbeZLL-NUtQKO78K3rept3cr5z2agd_fsGq-P__tsW3FkgU7HbutI9WLPVfdicLM7eH8AXmg-FvPg-q8vm7IcgsCuu-CJIpUl-dlXWwsx440GUlZh3BUAEuXZphKsdJRpHpH5BthTMqTHnq5g_H8LJaP_4_dhfVGXwdUSxmk8hFwaJDWUQKZ1qaVMb2jDVmaHYTA-KANN4aCIZFKijQhXxUFPL6EIX0mJmw0ewXs0q-wSEUXysiw4zIspCRgaR2Su1ihQ9HrzqjJPPW_KNvAtaWEW5U5EHb5zdehFZn3O6WhLlX6cf8unBYJKNh-M89uBxa89e0sEXmoY8SFYs3Qsw-fbqm6o8cyTcTKJDaNCDt86Qf-lffrh_fORaT_9F-CVsHu6N8s8fpwfP4DbhNGyTxbdhvakv7XPCQo164Vz-Gg3MByM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+algorithm+for+valganciclovir+dosing+in+pediatric+solid+organ+transplant+recipients&rft.jtitle=Pediatric+transplantation&rft.au=%C3%85sberg%2C+A&rft.au=Bjerre%2C+A&rft.au=Neely%2C+M&rft.date=2014-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1397-3142&rft.eissn=1399-3046&rft.volume=18&rft.issue=1&rft.spage=103&rft.epage=111&rft_id=info:doi/10.1111%2Fpetr.12179&rft_id=info%3Apmid%2F24152053&rft.externalDBID=PMC3880615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1397-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1397-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1397-3142&client=summon