Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability

The present study investigated the seminal plasma proteome of Holstein bulls with low (LF; n = 6) and high (HF; n = 8) sperm freezability. The percentage of viable frozen-thawed sperm (%ViableSperm) determined by flow cytometry varied from -2.2 in LF to + 7.8 in HF bulls, as compared to the average...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 14661
Main Authors Gomes, Fabio P., Park, Robin, Viana, Arabela G., Fernandez-Costa, Carolina, Topper, Einko, Kaya, Abdullah, Memili, Erdogan, Yates, John R., Moura, Arlindo A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.09.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study investigated the seminal plasma proteome of Holstein bulls with low (LF; n = 6) and high (HF; n = 8) sperm freezability. The percentage of viable frozen-thawed sperm (%ViableSperm) determined by flow cytometry varied from -2.2 in LF to + 7.8 in HF bulls, as compared to the average %ViableSperm (54.7%) measured in an 860-sire population. Seminal proteins were analyzed by label free mass spectrometry, with the support of statistical and bioinformatics analyses. This approach identified 1,445 proteins, associated with protein folding, cell–cell adhesion, NADH dehydrogenase activity, ATP-binding, proteasome complex, among other processes. There were 338 seminal proteins differentially expressed (p < 0.05) in LF and HF bulls. Based on multivariate analysis, BSP5 and seminal ribonuclease defined the HF phenotype, while spermadhesin-1, gelsolin, tubulins, glyceraldehyde-3-phosphate dehydrogenase, calmodulin, ATP synthase, sperm equatorial segment protein 1, peroxiredoxin-5, secretoglobin family 1D and glucose-6-phosphate isomerase characterized the LF phenotype. Regression models indicated that %ViableSperm of bulls was related to seminal plasma peroxiredoxin-5, spermadhesin-1 and the spermadhesin-1 × BSP5 interaction (R 2  = 0.84 and 0.79; p < 0.05). This report is the largest dataset of bovine seminal plasma proteins. Specific proteins of the non-cellular microenvironment of semen are potential markers of sperm cryotolerance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-71015-9