compleasm: a faster and more accurate reimplementation of BUSCO

Abstract Motivation Evaluating the gene completeness is critical to measuring the quality of a genome assembly. An incomplete assembly can lead to errors in gene predictions, annotation, and other downstream analyses. Benchmarking Universal Single-Copy Orthologs (BUSCO) is a widely used tool for ass...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 39; no. 10
Main Authors Huang, Neng, Li, Heng
Format Journal Article
LanguageEnglish
Published England Oxford University Press 03.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Motivation Evaluating the gene completeness is critical to measuring the quality of a genome assembly. An incomplete assembly can lead to errors in gene predictions, annotation, and other downstream analyses. Benchmarking Universal Single-Copy Orthologs (BUSCO) is a widely used tool for assessing the completeness of genome assembly by testing the presence of a set of single-copy orthologs conserved across a wide range of taxa. However, BUSCO is slow particularly for large genome assemblies. It is cumbersome to apply BUSCO to a large number of assemblies. Results Here, we present compleasm, an efficient tool for assessing the completeness of genome assemblies. Compleasm utilizes the miniprot protein-to-genome aligner and the conserved orthologous genes from BUSCO. It is 14 times faster than BUSCO for human assemblies and reports a more accurate completeness of 99.6% than BUSCO’s 95.7%, which is in close agreement with the annotation completeness of 99.5% for T2T-CHM13. Availability and implementation https://github.com/huangnengCSU/compleasm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btad595