compleasm: a faster and more accurate reimplementation of BUSCO
Abstract Motivation Evaluating the gene completeness is critical to measuring the quality of a genome assembly. An incomplete assembly can lead to errors in gene predictions, annotation, and other downstream analyses. Benchmarking Universal Single-Copy Orthologs (BUSCO) is a widely used tool for ass...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 39; no. 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
03.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Motivation
Evaluating the gene completeness is critical to measuring the quality of a genome assembly. An incomplete assembly can lead to errors in gene predictions, annotation, and other downstream analyses. Benchmarking Universal Single-Copy Orthologs (BUSCO) is a widely used tool for assessing the completeness of genome assembly by testing the presence of a set of single-copy orthologs conserved across a wide range of taxa. However, BUSCO is slow particularly for large genome assemblies. It is cumbersome to apply BUSCO to a large number of assemblies.
Results
Here, we present compleasm, an efficient tool for assessing the completeness of genome assemblies. Compleasm utilizes the miniprot protein-to-genome aligner and the conserved orthologous genes from BUSCO. It is 14 times faster than BUSCO for human assemblies and reports a more accurate completeness of 99.6% than BUSCO’s 95.7%, which is in close agreement with the annotation completeness of 99.5% for T2T-CHM13.
Availability and implementation
https://github.com/huangnengCSU/compleasm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1367-4811 1367-4803 1367-4811 |
DOI: | 10.1093/bioinformatics/btad595 |