A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference
The application of RNA interference (RNAi) to stem cell-based therapies will require highly specific and lineage-restricted gene silencing. Here we show the feasibility and therapeutic potential of coregulating transgene expression and RNAi in hematopoietic stem cells. We encoded promoterless small-...
Saved in:
Published in | Nature biotechnology Vol. 24; no. 1; pp. 89 - 94 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Nature
01.01.2006
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The application of RNA interference (RNAi) to stem cell-based therapies will require highly specific and lineage-restricted gene silencing. Here we show the feasibility and therapeutic potential of coregulating transgene expression and RNAi in hematopoietic stem cells. We encoded promoterless small-hairpin RNA (shRNA) within the intron of a recombinant γ-globin gene. Expression of both γ-globin and the lariat-embedded small interfering RNA (siRNA) was induced upon erythroid differentiation, specifically downregulating the targeted gene in tissue- and differentiation stage-specific fashion. The position of the shRNA within the intron was critical to concurrently achieve high-level transgene expression, effective siRNA generation and minimal interferon induction. Lentiviral transduction of CD34+ cells from patients with sickle cell anemia led to erythroid-specific expression of the γ-globin transgene and concomitant reduction of endogenous βS transcripts, thus providing proof of principle for therapeutic strategies that require synergistic gene addition and gene silencing in stem cell progeny. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/nbt1176 |