Biochar improves the growth and physiological traits of alfalfa, amaranth and maize grown under salt stress

Purpose Salinity is a main factor in decreasing seed germination, plant growth and yield. Salinity stress is a major problem for economic crops, as it can reduce crop yields and quality. Salinity stress occurs when the soil or water in which a crop is grown has a high salt content. Biochar improve p...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 11; p. e15684
Main Authors Jabborova, Dilfuza, Abdrakhmanov, Tokhtasin, Jabbarov, Zafarjon, Abdullaev, Shokhrukh, Azimov, Abdulahat, Mohamed, Ibrahim, AlHarbi, Maha, Abu-Elsaoud, Abdelghafar, Elkelish, Amr
Format Journal Article
LanguageEnglish
Published San Diego, USA PeerJ. Ltd 18.08.2023
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose Salinity is a main factor in decreasing seed germination, plant growth and yield. Salinity stress is a major problem for economic crops, as it can reduce crop yields and quality. Salinity stress occurs when the soil or water in which a crop is grown has a high salt content. Biochar improve plant growth and physiological traits under salt stress. The aim of the present study, the impact of biochar on growth, root morphological traits and physiological properties of alfalfa, amaranth and maize and soil enzyme activities under saline sands. Methods We studied the impact of biochar on plant growth and the physiological properties of alfalfa, amaranth and maize under salt stress conditions. After 40 days, plant growth parameters (plant height, shoot and root fresh weights), root morphological traits and physiological properties were measured. Soil nutrients such as the P, K and total N contents in soil and soil enzyme activities were analyzed. Results The results showed that the maize, alfalfa, and amaranth under biochar treatments significantly enhanced the plant height and root morphological traits over the control. The biochar on significantly increased the total root length, root diameter, and root volume. Compared to the control, the biochar significantly increased the chlorophyll a and b content, total chlorophyll and carotenoid content under salt stress. Furthermore, the biochar significantly increased enzyme activities of soil under salt stress in the three crops. Conclusions Biochar treatments promote plant growth and physiological traits of alfalfa, amaranth, and maize under the salt stress condition. Overall, biochar is an effective way to mitigate salinity stress in crops. It can help to reduce the amount of salt in the soil, improve the soil structure, and increase the availability of essential nutrients, which can all help to improve crop yields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.15684