Short hairpin RNA-expressing bacteria elicit RNA interference in mammals

RNA-interference (RNAi) is a potent mechanism, conserved from plants to humans for specific silencing of genes, which holds promise for functional genomics and gene-targeted therapies. Here we show that bacteria engineered to produce a short hairpin RNA (shRNA) targeting a mammalian gene induce tran...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 24; no. 6; pp. 697 - 702
Main Authors Li, Chiang J, Xiang, Shuanglin, Fruehauf, Johannes
Format Journal Article
LanguageEnglish
Published New York, NY Nature 01.06.2006
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:RNA-interference (RNAi) is a potent mechanism, conserved from plants to humans for specific silencing of genes, which holds promise for functional genomics and gene-targeted therapies. Here we show that bacteria engineered to produce a short hairpin RNA (shRNA) targeting a mammalian gene induce trans-kingdom RNAi in vitro and in vivo. Nonpathogenic Escherichia coli were engineered to transcribe shRNAs from a plasmid containing the invasin gene Inv and the listeriolysin O gene HlyA, which encode two bacterial factors needed for successful transfer of the shRNAs into mammalian cells. Upon oral or intravenous administration, E. coli encoding shRNA against CTNNB1 (catenin β-1) induce significant gene silencing in the intestinal epithelium and in human colon cancer xenografts in mice. These results provide an example of trans-kingdom RNAi in higher organisms and suggest the potential of bacteria-mediated RNAi for functional genomics, therapeutic target validation and development of clinically compatible RNAi-based therapies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1087-0156
1546-1696
DOI:10.1038/nbt1211