Benchmarking Modern Edge Devices for AI Applications
AI (artificial intelligence) has grown at an overwhelming speed for the last decade, to the extent that it has become one of the mainstream tools that drive the advancements in science and technology. Meanwhile, the paradigm of edge computing has emerged as one of the foremost areas in which applica...
Saved in:
Published in | IEICE Transactions on Information and Systems Vol. E104.D; no. 3; pp. 394 - 403 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Institute of Electronics, Information and Communication Engineers
01.03.2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | AI (artificial intelligence) has grown at an overwhelming speed for the last decade, to the extent that it has become one of the mainstream tools that drive the advancements in science and technology. Meanwhile, the paradigm of edge computing has emerged as one of the foremost areas in which applications using the AI technology are being most actively researched, due to its potential benefits and impact on today's widespread networked computing environments. In this paper, we evaluate two major entry-level offerings in the state-of-the-art edge device technology, which highlight increased computing power and specialized hardware support for AI applications. We perform a set of deep learning benchmarks on the devices to measure their performance. By comparing the performance with other GPU (graphics processing unit) accelerated systems in different platforms, we assess the computational capability of the modern edge devices featuring a significant amount of hardware parallelism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2020EDP7160 |