Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: The COMPARE Trial

Objective Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi) deep brain stimulation (DBS) in Parkinson disease. Methods Fifty‐two subjects were randomized to unilateral STN or GPi DBS. The co‐primary out...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 65; no. 5; pp. 586 - 595
Main Authors Okun, Michael S., Fernandez, Hubert H., Wu, Samuel S., Kirsch-Darrow, Lindsey, Bowers, Dawn, Bova, Frank, Suelter, Michele, Jacobson IV, Charles E., Wang, Xinping, Gordon Jr, Clifford W., Zeilman, Pam, Romrell, Janet, Martin, Pam, Ward, Herbert, Rodriguez, Ramon L., Foote, Kelly D.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2009
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi) deep brain stimulation (DBS) in Parkinson disease. Methods Fifty‐two subjects were randomized to unilateral STN or GPi DBS. The co‐primary outcome measures were the Visual Analog Mood Scale, and verbal fluency (semantic and letter) at 7 months post‐DBS in the optimal setting compared to pre‐DBS. At 7 months post‐DBS, subjects were tested in four randomized/counterbalanced conditions (optimal, ventral, dorsal, and off DBS). Results Forty‐five subjects (23 GPi, 22 STN) completed the protocol. The study revealed no difference between STN and GPi DBS in the change of co‐primary mood and cognitive outcomes pre‐ to post‐DBS in the optimal setting (Hotelling's T2 test: p = 0.16 and 0.08 respectively). Subjects in both targets were less “happy”, less “energetic” and more “confused” when stimulated ventrally. Comparison of the other 3 DBS conditions to pre‐DBS showed a larger deterioration of letter verbal fluency in STN, especially when off DBS. There was no difference in UPDRS motor improvement between targets. Interpretation There were no significant differences in the co‐primary outcome measures (mood and cognition) between STN and GPi in the optimal DBS state. Adverse mood effects occurred ventrally in both targets. A worsening of letter verbal fluency was seen in STN. The persistence of deterioration in verbal fluency in the off STN DBS state was suggestive of a surgical rather than a stimulation‐induced effect. Similar motor improvement were observed with both STN and GPi DBS. Ann Neurol 2009
AbstractList Objective Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi) deep brain stimulation (DBS) in Parkinson disease. Methods Fifty‐two subjects were randomized to unilateral STN or GPi DBS. The co‐primary outcome measures were the Visual Analog Mood Scale, and verbal fluency (semantic and letter) at 7 months post‐DBS in the optimal setting compared to pre‐DBS. At 7 months post‐DBS, subjects were tested in four randomized/counterbalanced conditions (optimal, ventral, dorsal, and off DBS). Results Forty‐five subjects (23 GPi, 22 STN) completed the protocol. The study revealed no difference between STN and GPi DBS in the change of co‐primary mood and cognitive outcomes pre‐ to post‐DBS in the optimal setting (Hotelling's T2 test: p = 0.16 and 0.08 respectively). Subjects in both targets were less “happy”, less “energetic” and more “confused” when stimulated ventrally. Comparison of the other 3 DBS conditions to pre‐DBS showed a larger deterioration of letter verbal fluency in STN, especially when off DBS. There was no difference in UPDRS motor improvement between targets. Interpretation There were no significant differences in the co‐primary outcome measures (mood and cognition) between STN and GPi in the optimal DBS state. Adverse mood effects occurred ventrally in both targets. A worsening of letter verbal fluency was seen in STN. The persistence of deterioration in verbal fluency in the off STN DBS state was suggestive of a surgical rather than a stimulation‐induced effect. Similar motor improvement were observed with both STN and GPi DBS. Ann Neurol 2009
Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi) deep brain stimulation (DBS) in Parkinson disease.OBJECTIVEOur aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi) deep brain stimulation (DBS) in Parkinson disease.Fifty-two subjects were randomized to unilateral STN or GPi DBS. The co-primary outcome measures were the Visual Analog Mood Scale, and verbal fluency (semantic and letter) at 7 months post-DBS in the optimal setting compared to pre-DBS. At 7 months post-DBS, subjects were tested in four randomized/counterbalanced conditions (optimal, ventral, dorsal, and off DBS).METHODSFifty-two subjects were randomized to unilateral STN or GPi DBS. The co-primary outcome measures were the Visual Analog Mood Scale, and verbal fluency (semantic and letter) at 7 months post-DBS in the optimal setting compared to pre-DBS. At 7 months post-DBS, subjects were tested in four randomized/counterbalanced conditions (optimal, ventral, dorsal, and off DBS).Forty-five subjects (23 GPi, 22 STN) completed the protocol. The study revealed no difference between STN and GPi DBS in the change of co-primary mood and cognitive outcomes pre- to post-DBS in the optimal setting (Hotelling's T(2) test: p = 0.16 and 0.08 respectively). Subjects in both targets were less "happy", less "energetic" and more "confused" when stimulated ventrally. Comparison of the other 3 DBS conditions to pre-DBS showed a larger deterioration of letter verbal fluency in STN, especially when off DBS. There was no difference in UPDRS motor improvement between targets.RESULTSForty-five subjects (23 GPi, 22 STN) completed the protocol. The study revealed no difference between STN and GPi DBS in the change of co-primary mood and cognitive outcomes pre- to post-DBS in the optimal setting (Hotelling's T(2) test: p = 0.16 and 0.08 respectively). Subjects in both targets were less "happy", less "energetic" and more "confused" when stimulated ventrally. Comparison of the other 3 DBS conditions to pre-DBS showed a larger deterioration of letter verbal fluency in STN, especially when off DBS. There was no difference in UPDRS motor improvement between targets.There were no significant differences in the co-primary outcome measures (mood and cognition) between STN and GPi in the optimal DBS state. Adverse mood effects occurred ventrally in both targets. A worsening of letter verbal fluency was seen in STN. The persistence of deterioration in verbal fluency in the off STN DBS state was suggestive of a surgical rather than a stimulation-induced effect. Similar motor improvement were observed with both STN and GPi DBS.INTERPRETATIONThere were no significant differences in the co-primary outcome measures (mood and cognition) between STN and GPi in the optimal DBS state. Adverse mood effects occurred ventrally in both targets. A worsening of letter verbal fluency was seen in STN. The persistence of deterioration in verbal fluency in the off STN DBS state was suggestive of a surgical rather than a stimulation-induced effect. Similar motor improvement were observed with both STN and GPi DBS.
Objective Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi) deep brain stimulation (DBS) in Parkinson disease. Methods Fifty-two subjects were randomized to unilateral STN or GPi DBS. The co-primary outcome measures were the Visual Analog Mood Scale, and verbal fluency (semantic and letter) at 7 months post-DBS in the optimal setting compared to pre-DBS. At 7 months post-DBS, subjects were tested in four randomized/counterbalanced conditions (optimal, ventral, dorsal, and off DBS). Results Forty-five subjects (23 GPi, 22 STN) completed the protocol. The study revealed no difference between STN and GPi DBS in the change of co-primary mood and cognitive outcomes pre- to post-DBS in the optimal setting (Hotelling's T2 test: p = 0.16 and 0.08 respectively). Subjects in both targets were less happy, less energetic and more confused when stimulated ventrally. Comparison of the other 3 DBS conditions to pre-DBS showed a larger deterioration of letter verbal fluency in STN, especially when off DBS. There was no difference in UPDRS motor improvement between targets. Interpretation There were no significant differences in the co-primary outcome measures (mood and cognition) between STN and GPi in the optimal DBS state. Adverse mood effects occurred ventrally in both targets. A worsening of letter verbal fluency was seen in STN. The persistence of deterioration in verbal fluency in the off STN DBS state was suggestive of a surgical rather than a stimulation-induced effect. Similar motor improvement were observed with both STN and GPi DBS. Ann Neurol 2009.
Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi) deep brain stimulation (DBS) in Parkinson disease. Fifty-two subjects were randomized to unilateral STN or GPi DBS. The co-primary outcome measures were the Visual Analog Mood Scale, and verbal fluency (semantic and letter) at 7 months post-DBS in the optimal setting compared to pre-DBS. At 7 months post-DBS, subjects were tested in four randomized/counterbalanced conditions (optimal, ventral, dorsal, and off DBS). Forty-five subjects (23 GPi, 22 STN) completed the protocol. The study revealed no difference between STN and GPi DBS in the change of co-primary mood and cognitive outcomes pre- to post-DBS in the optimal setting (Hotelling's T(2) test: p = 0.16 and 0.08 respectively). Subjects in both targets were less "happy", less "energetic" and more "confused" when stimulated ventrally. Comparison of the other 3 DBS conditions to pre-DBS showed a larger deterioration of letter verbal fluency in STN, especially when off DBS. There was no difference in UPDRS motor improvement between targets. There were no significant differences in the co-primary outcome measures (mood and cognition) between STN and GPi in the optimal DBS state. Adverse mood effects occurred ventrally in both targets. A worsening of letter verbal fluency was seen in STN. The persistence of deterioration in verbal fluency in the off STN DBS state was suggestive of a surgical rather than a stimulation-induced effect. Similar motor improvement were observed with both STN and GPi DBS.
Author Bowers, Dawn
Kirsch-Darrow, Lindsey
Zeilman, Pam
Wu, Samuel S.
Bova, Frank
Okun, Michael S.
Suelter, Michele
Martin, Pam
Jacobson IV, Charles E.
Gordon Jr, Clifford W.
Foote, Kelly D.
Romrell, Janet
Rodriguez, Ramon L.
Fernandez, Hubert H.
Wang, Xinping
Ward, Herbert
Author_xml – sequence: 1
  givenname: Michael S.
  surname: Okun
  fullname: Okun, Michael S.
  email: okun@neurology.ufl.edu
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 2
  givenname: Hubert H.
  surname: Fernandez
  fullname: Fernandez, Hubert H.
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 3
  givenname: Samuel S.
  surname: Wu
  fullname: Wu, Samuel S.
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 4
  givenname: Lindsey
  surname: Kirsch-Darrow
  fullname: Kirsch-Darrow, Lindsey
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 5
  givenname: Dawn
  surname: Bowers
  fullname: Bowers, Dawn
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 6
  givenname: Frank
  surname: Bova
  fullname: Bova, Frank
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 7
  givenname: Michele
  surname: Suelter
  fullname: Suelter, Michele
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 8
  givenname: Charles E.
  surname: Jacobson IV
  fullname: Jacobson IV, Charles E.
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 9
  givenname: Xinping
  surname: Wang
  fullname: Wang, Xinping
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 10
  givenname: Clifford W.
  surname: Gordon Jr
  fullname: Gordon Jr, Clifford W.
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 11
  givenname: Pam
  surname: Zeilman
  fullname: Zeilman, Pam
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 12
  givenname: Janet
  surname: Romrell
  fullname: Romrell, Janet
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 13
  givenname: Pam
  surname: Martin
  fullname: Martin, Pam
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 14
  givenname: Herbert
  surname: Ward
  fullname: Ward, Herbert
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 15
  givenname: Ramon L.
  surname: Rodriguez
  fullname: Rodriguez, Ramon L.
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
– sequence: 16
  givenname: Kelly D.
  surname: Foote
  fullname: Foote, Kelly D.
  organization: Movement Disorders Center, University of Florida, McKnight Brain Institute, College of Medicine, Gainesville, FL
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21557255$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19288469$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URH9gwQsgbwCxSGvHiZN0NxqVAam0BQYhsbFu7DutwXEGOwH6CLw1TmdaJCRAXlzL-s650jneJzu-90jIY84OOWP5EXg4zHnZyHtkj5eCZ3VeNDtkjwlZZCUXxS7Zj_EzY6yRnD0gu7zJ67qQzR75Oe8vvR1s7yl4Q7u-N9R6egHhi_Wx988jNTYiRJye49gOV-Cgs5r6UTscI_2GIaZx6fo2jTU4Z026WD9g8EAN4pq2ASb1YLvRwbTsmC6vkM7P31zM3p3QZbDgHpL7K3ARH23nAfnw8mQ5f5Wdni9ez2enmS5zITMj5IqLtgTB06kKCUwbQGC8ro1sBUdkFWM1GtA1rCqESlda5lhKWdWmEQfk2cZ3HfqvI8ZBdTZqdA489mNUshJcyiL_L5gzzuuiKhP4ZAuObYdGrYPtIFyr25QT8HQLQNTgVgG8tvGOS9WVVV5ORi82nA59jAFXv62YmppWqWl103Rij_5gtR1ush1S2O5fiu_W4fXfrdXsbHaryDYKGwf8cadIf2NKqSrVx7OFEovq7ftP-VzV4hfs6ck8
CODEN ANNED3
CitedBy_id crossref_primary_10_1007_s00415_025_12915_6
crossref_primary_10_1016_j_parkreldis_2010_06_008
crossref_primary_10_3390_brainsci12111588
crossref_primary_10_1186_s13063_019_3926_y
crossref_primary_10_1007_s13311_016_0426_6
crossref_primary_10_3389_fnagi_2022_1020321
crossref_primary_10_1177_0004867415598011
crossref_primary_10_1177_1756285611423412
crossref_primary_10_1007_s13311_020_00939_x
crossref_primary_10_1080_00207454_2019_1609473
crossref_primary_10_1155_2017_7348101
crossref_primary_10_1002_wsbm_1635
crossref_primary_10_1007_s44194_024_00040_x
crossref_primary_10_1016_j_clineuro_2020_106341
crossref_primary_10_1159_000446609
crossref_primary_10_1016_j_csbj_2016_11_003
crossref_primary_10_1523_ENEURO_0140_17_2017
crossref_primary_10_1016_j_bandc_2016_10_001
crossref_primary_10_3389_fnhum_2020_578615
crossref_primary_10_1212_01_wnl_0000473050_23344_3c
crossref_primary_10_3390_brainsci8010019
crossref_primary_10_1016_j_neuroimage_2010_09_077
crossref_primary_10_1002_mdc3_12285
crossref_primary_10_1177_0300060517708102
crossref_primary_10_1002_hbm_23366
crossref_primary_10_3389_fnhum_2021_667035
crossref_primary_10_1016_j_parkreldis_2011_01_018
crossref_primary_10_1016_j_pharmthera_2010_06_002
crossref_primary_10_1016_j_ncl_2010_03_014
crossref_primary_10_1016_j_jocn_2013_05_011
crossref_primary_10_1016_j_ncl_2020_01_001
crossref_primary_10_1371_journal_pone_0174512
crossref_primary_10_1080_13854046_2010_532812
crossref_primary_10_1080_14737175_2022_2136030
crossref_primary_10_1016_S1474_4422_11_70308_8
crossref_primary_10_3390_ijms17060904
crossref_primary_10_1007_s10143_014_0588_9
crossref_primary_10_1016_j_jns_2012_07_033
crossref_primary_10_1227_neu_0000000000003271
crossref_primary_10_1523_JNEUROSCI_0431_18_2018
crossref_primary_10_1016_j_parkreldis_2023_105346
crossref_primary_10_1093_arclin_acae062
crossref_primary_10_1186_2047_9158_2_22
crossref_primary_10_1002_ana_26164
crossref_primary_10_1016_j_neurot_2023_e00310
crossref_primary_10_1080_13854046_2021_1929496
crossref_primary_10_3389_fnagi_2014_00349
crossref_primary_10_1093_brain_awab258
crossref_primary_10_3171_2017_8_JNS17883
crossref_primary_10_4306_pi_2015_12_1_146
crossref_primary_10_1016_j_psym_2013_09_003
crossref_primary_10_1080_02688697_2020_1775786
crossref_primary_10_1038_s41531_023_00525_w
crossref_primary_10_1007_s13311_014_0282_1
crossref_primary_10_1088_1741_2552_ab53ac
crossref_primary_10_3389_fnhum_2021_749567
crossref_primary_10_1109_TVCG_2012_92
crossref_primary_10_1038_s41531_020_0115_3
crossref_primary_10_1176_appi_neuropsych_18050118
crossref_primary_10_1016_j_nicl_2016_09_019
crossref_primary_10_1002_mds_29945
crossref_primary_10_4103_0366_6999_171464
crossref_primary_10_1016_j_ncl_2024_12_012
crossref_primary_10_1016_j_parkreldis_2019_01_009
crossref_primary_10_7759_cureus_44177
crossref_primary_10_1016_j_eplepsyres_2011_08_017
crossref_primary_10_1016_j_wneu_2013_11_018
crossref_primary_10_1111_ner_12537
crossref_primary_10_1016_j_nbd_2010_08_029
crossref_primary_10_1111_ner_12097
crossref_primary_10_1002_mdc3_12004
crossref_primary_10_1371_journal_pone_0079247
crossref_primary_10_1186_s40035_015_0034_0
crossref_primary_10_1176_jnp_23_1_jnp56
crossref_primary_10_1016_j_brs_2020_12_014
crossref_primary_10_1080_23279095_2021_1898396
crossref_primary_10_1016_S1474_4422_13_70294_1
crossref_primary_10_1016_S1353_8020_13_70044_0
crossref_primary_10_1177_08919887211018269
crossref_primary_10_1111_ner_12404
crossref_primary_10_1016_j_baga_2011_08_002
crossref_primary_10_1038_s41531_024_00800_4
crossref_primary_10_1371_journal_pone_0198529
crossref_primary_10_1016_j_jpsychires_2024_06_011
crossref_primary_10_1212_WNL_0000000000000315
crossref_primary_10_1002_acn3_51304
crossref_primary_10_1002_ana_23890
crossref_primary_10_1093_brain_awp151
crossref_primary_10_1155_2017_2615619
crossref_primary_10_1002_mdc3_12592
crossref_primary_10_1016_j_wneu_2017_05_042
crossref_primary_10_1002_mdc3_12231
crossref_primary_10_1007_s00702_010_0530_4
crossref_primary_10_1016_j_jocn_2021_05_062
crossref_primary_10_3390_jcm12031074
crossref_primary_10_3389_fpsyg_2019_02638
crossref_primary_10_1002_mds_25006
crossref_primary_10_1176_appi_neuropsych_13020032
crossref_primary_10_1016_j_brs_2013_01_003
crossref_primary_10_1111_ner_12153
crossref_primary_10_1002_jmri_28080
crossref_primary_10_1002_mds_24035
crossref_primary_10_1155_2019_6569874
crossref_primary_10_3389_fneur_2018_00983
crossref_primary_10_1016_j_tcmj_2015_10_001
crossref_primary_10_1227_NEU_0b013e318232fdac
crossref_primary_10_1002_mds_29160
crossref_primary_10_1016_j_neuropsychologia_2010_12_030
crossref_primary_10_1371_journal_pone_0161404
crossref_primary_10_1016_j_parkreldis_2009_10_003
crossref_primary_10_1227_neu_0000000000001964
crossref_primary_10_3171_2013_9_FOCUS13383
crossref_primary_10_1586_ern_10_156
crossref_primary_10_1016_j_brs_2012_09_012
crossref_primary_10_1016_S1474_4422_12_70264_8
crossref_primary_10_1109_TNSRE_2017_2699223
crossref_primary_10_1159_000354880
crossref_primary_10_1515_revneuro_2023_0010
crossref_primary_10_1002_mds_23171
crossref_primary_10_1111_ner_12141
crossref_primary_10_3389_fncom_2020_561180
crossref_primary_10_1155_2021_2711365
crossref_primary_10_1093_brain_awx300
crossref_primary_10_1371_journal_pone_0019140
crossref_primary_10_1146_annurev_neuro_070815_013906
crossref_primary_10_3389_fneur_2014_00243
crossref_primary_10_1016_j_bandl_2014_04_002
crossref_primary_10_3233_JPD_181368
crossref_primary_10_1227_neu_0000000000001957
crossref_primary_10_1155_2014_252486
crossref_primary_10_1371_journal_pone_0156721
crossref_primary_10_1111_j_1600_0404_2010_01455_x
crossref_primary_10_1227_NEU_0b013e31820b52c5
crossref_primary_10_3389_fneur_2019_00419
crossref_primary_10_3171_2015_4_JNS15173
crossref_primary_10_1016_j_tcmj_2013_09_001
crossref_primary_10_1007_s00415_019_09240_0
crossref_primary_10_1002_mds_23769
crossref_primary_10_3389_fneur_2019_00410
crossref_primary_10_1016_j_neuroimage_2013_08_026
crossref_primary_10_1038_nrneurol_2014_252
crossref_primary_10_2217_fnl_10_9
crossref_primary_10_1016_j_parkreldis_2010_12_011
crossref_primary_10_1016_j_nrleng_2013_05_003
crossref_primary_10_1097_NRL_0b013e31822d1069
crossref_primary_10_1227_NEU_0000000000001359
crossref_primary_10_1111_ner_12050
crossref_primary_10_1136_jnnp_2018_319723
crossref_primary_10_1177_1756285610392446
crossref_primary_10_1093_arclin_acx090
crossref_primary_10_1176_appi_neuropsych_11070170
crossref_primary_10_1007_s00702_017_1719_6
crossref_primary_10_1371_journal_pone_0178984
crossref_primary_10_1016_j_clinph_2022_09_012
crossref_primary_10_1176_appi_neuropsych_11030060
crossref_primary_10_1007_s00455_023_10660_4
crossref_primary_10_17116_jnevro201611612154_60
crossref_primary_10_1016_j_pneurobio_2017_04_006
crossref_primary_10_1002_mds_23511
crossref_primary_10_1016_j_eplepsyres_2021_106591
crossref_primary_10_1371_journal_pone_0200262
crossref_primary_10_1097_WCO_0b013e3283632d08
crossref_primary_10_1002_hbm_24544
crossref_primary_10_1016_j_brs_2012_05_011
crossref_primary_10_1002_ana_25734
crossref_primary_10_1227_NEU_0000000000000613
crossref_primary_10_1590_S1980_57642015DN91000005
crossref_primary_10_1007_s11910_016_0690_1
crossref_primary_10_1016_j_jagp_2016_08_017
crossref_primary_10_1016_j_ncl_2013_03_007
crossref_primary_10_3171_2015_4_JNS1550
crossref_primary_10_3233_JPD_140512
crossref_primary_10_1016_j_neuroimage_2010_03_068
crossref_primary_10_1038_npp_2011_212
crossref_primary_10_3389_fnagi_2016_00132
crossref_primary_10_7759_cureus_69613
crossref_primary_10_1007_s11910_021_01156_5
crossref_primary_10_1093_brain_awt151
crossref_primary_10_1016_j_brs_2016_12_014
crossref_primary_10_1080_14737175_2019_1636648
crossref_primary_10_1186_s12984_021_00873_9
crossref_primary_10_1002_mds_27340
crossref_primary_10_1002_mds_25164
crossref_primary_10_1080_13554794_2011_568502
crossref_primary_10_1212_WNL_0b013e3181fb3628
crossref_primary_10_1227_NEU_0b013e3182160456
crossref_primary_10_1016_j_jns_2018_08_016
crossref_primary_10_1097_WCO_0000000000000226
crossref_primary_10_3389_fnhum_2022_867055
crossref_primary_10_3389_fnins_2024_1257579
crossref_primary_10_1016_j_neuropsychologia_2014_08_032
crossref_primary_10_1016_j_baga_2012_07_001
crossref_primary_10_1017_S1092852917000062
crossref_primary_10_1056_NEJMoa0907083
crossref_primary_10_3389_fnhum_2021_633655
crossref_primary_10_1111_ncn3_12131
crossref_primary_10_3171_2010_4_FOCUS10104
crossref_primary_10_2139_ssrn_4047885
crossref_primary_10_1007_s00415_012_6798_6
crossref_primary_10_1056_NEJMc1214078
crossref_primary_10_1021_acssensors_9b00182
crossref_primary_10_3389_fnins_2020_00041
crossref_primary_10_1007_s10548_014_0373_7
crossref_primary_10_1038_mtm_2015_51
crossref_primary_10_1038_npjparkd_2016_24
crossref_primary_10_1007_s00221_010_2232_4
crossref_primary_10_1093_braincomms_fcad025
crossref_primary_10_1016_j_neulet_2017_07_012
crossref_primary_10_1016_j_parkreldis_2023_105980
crossref_primary_10_1056_NEJMct1208070
crossref_primary_10_1523_JNEUROSCI_0555_24_2025
crossref_primary_10_1093_brain_awae004
crossref_primary_10_1097_WCO_0000000000000579
crossref_primary_10_1093_braincomms_fcae111
crossref_primary_10_1002_mds_27576
crossref_primary_10_1038_nrneurol_2010_111
crossref_primary_10_1016_j_wneu_2018_11_137
crossref_primary_10_3390_cimb45050284
crossref_primary_10_1044_nnsld20_2_31
crossref_primary_10_1007_s00702_011_0593_x
crossref_primary_10_1007_s00702_010_0575_4
crossref_primary_10_1007_s13311_013_0235_0
crossref_primary_10_1016_j_neuroimage_2016_09_023
crossref_primary_10_2176_nmc_ra_2014_0446
crossref_primary_10_1007_s00702_017_1722_y
crossref_primary_10_1177_155005941004100207
crossref_primary_10_3389_fneur_2019_00617
crossref_primary_10_1016_j_nbd_2009_11_019
crossref_primary_10_1016_j_neuroimage_2020_116750
crossref_primary_10_1007_s00115_010_2938_3
crossref_primary_10_1007_s00415_015_7790_8
crossref_primary_10_1136_jnnp_2014_308119
crossref_primary_10_1016_j_ibneur_2024_01_015
crossref_primary_10_3389_fneur_2014_00154
crossref_primary_10_1093_neuros_nyz318
crossref_primary_10_1007_s11065_015_9302_0
crossref_primary_10_1016_j_baga_2011_10_003
crossref_primary_10_1177_1756286419838096
crossref_primary_10_2176_nmc_ra_2016_0002
crossref_primary_10_1016_j_heliyon_2024_e26303
crossref_primary_10_2147_JPRLS_S306244
crossref_primary_10_1136_jnnp_2009_200998
crossref_primary_10_1155_2017_3085140
crossref_primary_10_1172_JCI68341
crossref_primary_10_3389_fneur_2019_00601
crossref_primary_10_1002_mds_25735
crossref_primary_10_3389_fnhum_2020_578348
crossref_primary_10_1002_mds_26827
crossref_primary_10_1093_texcom_tgaa083
crossref_primary_10_5124_jkma_2013_56_8_695
crossref_primary_10_1038_s41531_021_00211_9
crossref_primary_10_1002_mds_29656
crossref_primary_10_3171_2016_11_JNS16715
crossref_primary_10_1155_2018_4328371
crossref_primary_10_1109_TNSRE_2014_2330515
crossref_primary_10_18231_j_ijn_2024_005
crossref_primary_10_1002_mdc3_13161
crossref_primary_10_1017_cjn_2016_22
crossref_primary_10_1016_S1353_8020_11_70052_9
crossref_primary_10_1038_s41582_019_0155_7
crossref_primary_10_1016_j_jdbs_2024_07_003
crossref_primary_10_1523_JNEUROSCI_2113_19_2020
crossref_primary_10_1002_mds_23903
crossref_primary_10_1371_journal_pone_0114140
crossref_primary_10_1017_S1355617716000035
crossref_primary_10_1111_joim_13541
crossref_primary_10_4061_2011_871874
crossref_primary_10_1093_brain_aww182
crossref_primary_10_1016_j_psym_2011_01_019
crossref_primary_10_3389_fnhum_2021_656188
crossref_primary_10_1007_s40120_020_00220_5
crossref_primary_10_3171_2017_10_JNS171513
crossref_primary_10_1055_s_0044_1786037
crossref_primary_10_1016_S1474_4422_12_70049_2
crossref_primary_10_1212_CPJ_0000000000200245
crossref_primary_10_1590_1516_3180_2023_0187_r1_04032024
crossref_primary_10_4103_jnbs_jnbs_30_21
crossref_primary_10_3389_fneur_2018_00341
crossref_primary_10_1038_s41467_020_15570_9
crossref_primary_10_3233_JPD_202045
crossref_primary_10_1016_j_parkreldis_2015_07_020
crossref_primary_10_3390_cells12111478
crossref_primary_10_1016_j_brs_2014_01_008
crossref_primary_10_1590_0004_282x20180048
crossref_primary_10_3389_fneur_2021_679918
crossref_primary_10_1016_j_neuroimage_2018_05_048
crossref_primary_10_1109_TBME_2012_2235835
crossref_primary_10_4103_0028_3886_302466
crossref_primary_10_1016_j_jns_2011_07_016
crossref_primary_10_1016_j_brs_2025_01_011
crossref_primary_10_1371_journal_pone_0093524
crossref_primary_10_1016_j_cortex_2013_11_003
crossref_primary_10_1016_j_parkreldis_2009_12_006
crossref_primary_10_1016_j_neurom_2023_11_001
crossref_primary_10_1212_01_wnl_0000482821_31709_31
crossref_primary_10_1016_j_brs_2018_09_014
crossref_primary_10_1016_j_jagp_2023_02_049
crossref_primary_10_3389_fneur_2021_812455
crossref_primary_10_1016_j_pneurobio_2015_08_001
crossref_primary_10_1002_mds_25870
crossref_primary_10_1016_j_neubiorev_2019_12_022
crossref_primary_10_1016_j_brs_2023_08_026
crossref_primary_10_7759_cureus_28760
crossref_primary_10_1002_mds_26083
crossref_primary_10_1111_joim_13329
crossref_primary_10_3389_fnhum_2022_943472
crossref_primary_10_1016_j_parkreldis_2014_01_008
crossref_primary_10_3389_fnins_2021_699010
crossref_primary_10_1162_jocn_a_00770
crossref_primary_10_1016_j_expneurol_2012_06_035
crossref_primary_10_1038_s41598_017_10003_y
crossref_primary_10_1016_j_pmr_2012_11_003
crossref_primary_10_1080_21507740_2010_537298
crossref_primary_10_1155_2017_9358153
crossref_primary_10_3171_2021_7_JNS21190
crossref_primary_10_1016_j_actpha_2020_03_010
crossref_primary_10_1016_j_parkreldis_2015_08_033
crossref_primary_10_1073_pnas_2316149121
crossref_primary_10_1111_j_1525_1403_2012_00500_x
crossref_primary_10_1176_appi_neuropsych_10070109
crossref_primary_10_1016_j_nrl_2013_05_002
crossref_primary_10_1111_j_1468_1331_2011_03447_x
crossref_primary_10_1007_s11910_017_0761_y
crossref_primary_10_3109_17549507_2010_491870
crossref_primary_10_3389_fnagi_2018_00001
crossref_primary_10_3233_JPD_223446
crossref_primary_10_1007_s11940_016_0432_3
crossref_primary_10_1016_j_neuropsychologia_2014_02_021
crossref_primary_10_1590_S1980_57642012DN06010002
crossref_primary_10_1212_01_CON_0000348903_94715_b4
crossref_primary_10_1002_ana_26434
crossref_primary_10_3389_fnhum_2022_888701
crossref_primary_10_1002_ana_24374
crossref_primary_10_1002_mds_27283
crossref_primary_10_1002_acn3_50889
crossref_primary_10_1016_j_bbr_2020_112621
crossref_primary_10_14802_jmd_17001
crossref_primary_10_1016_j_jneuroling_2011_07_005
crossref_primary_10_1016_S1634_7072_23_47685_4
crossref_primary_10_1080_14737175_2024_2360121
crossref_primary_10_1038_s41598_022_19150_3
crossref_primary_10_3389_fnins_2016_00173
crossref_primary_10_1111_ner_12446
crossref_primary_10_1176_appi_ajp_2016_15121583
crossref_primary_10_1016_j_parkreldis_2018_08_017
crossref_primary_10_3174_ajnr_A5641
crossref_primary_10_1016_j_brs_2021_04_016
crossref_primary_10_1093_brain_awt122
crossref_primary_10_3389_fnins_2018_00385
crossref_primary_10_1111_j_1468_1331_2012_03759_x
crossref_primary_10_1038_s41398_019_0522_6
crossref_primary_10_1111_ner_12442
crossref_primary_10_3389_fninf_2023_1156818
crossref_primary_10_1016_j_parkreldis_2016_09_018
crossref_primary_10_1097_WCO_0000000000000118
crossref_primary_10_3171_2018_7_JNS18541
crossref_primary_10_1002_mds_26500
crossref_primary_10_1002_ana_26302
crossref_primary_10_23736_S0390_5616_22_05751_4
Cites_doi 10.1176/ajp.143.12.1631
10.1002/mds.21029
10.1093/brain/awh571
10.1097/00005053-199702000-00007
10.1212/01.WNL.0000031428.31861.23
10.1002/mds.10138
10.1093/brain/123.10.2091
10.1056/NEJM199905133401905
10.1159/000070828
10.1176/ajp.149.7.918
10.1002/mds.21245
10.3171/jns.2002.97.2.0370
10.1002/ana.410440407
10.3171/jns.2005.103.6.0956
10.1002/mds.20957
10.1212/WNL.42.6.1142
10.1136/jnnp.55.3.181
10.1016/j.neuropsychologia.2004.10.006
10.1007/s11910-007-0043-1
10.1212/01.wnl.0000215250.82576.87
10.1001/archneur.1993.00540020018011
10.1176/ajp.146.5.627
10.1212/01.WNL.0000032756.14298.18
10.1017/S1355617707070105
10.1097/00006123-199912000-00024
10.1212/WNL.55.3.411
10.1136/jnnp.74.11.1584
10.1002/ana.20102
10.1002/mds.10441
10.1126/science.1146157
10.1001/archneur.62.4.533
10.1136/jnnp.2002.009803
10.1176/jnp.2006.18.3.397
10.1001/archneur.62.4.554
10.1016/S1474-4422(04)00740-9
10.1056/NEJMoa000827
10.1080/13854040500203290
10.1016/j.parkreldis.2004.01.007
10.3171/jns.1998.88.6.1027
ContentType Journal Article
Copyright Copyright © 2009 American Neurological Association
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 American Neurological Association
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1002/ana.21596
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 595
ExternalDocumentID 19288469
21557255
10_1002_ana_21596
ANA21596
ark_67375_WNG_3G7QSZ2C_8
Genre article
Comparative Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K23 NS044997
– fundername: NINDS NIH HHS
  grantid: K23 NS 044997
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRZS
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c5236-d36f13b5a31313746a0cdaea0188d6b31ee07008edac8af7ea7c7c62e56678d93
IEDL.DBID DR2
ISSN 0364-5134
1531-8249
IngestDate Thu Jul 10 19:20:27 EDT 2025
Thu Jul 10 23:10:10 EDT 2025
Mon Jul 21 05:29:05 EDT 2025
Mon Jul 21 09:16:43 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Tue Jul 01 02:23:58 EDT 2025
Wed Jan 22 16:30:44 EST 2025
Wed Oct 30 09:48:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Nervous system diseases
Deep brain stimulation
Central nervous system
Parkinson disease
Cognition
Encephalon
Cerebral disorder
Mood
Central nervous system disease
Degenerative disease
Subthalamic nucleus
Comparative study
Extrapyramidal syndrome
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5236-d36f13b5a31313746a0cdaea0188d6b31ee07008edac8af7ea7c7c62e56678d93
Notes Potential conflict of interest: This study was industry independent and completely supported by the NIH. M.S.O serves as a consultant to the National Parkinson Foundation (National Medical Director), and K.D.F. and M.S.O. receive honoraria for DBS fellows and for physician teaching from the Medtronic company.
istex:2141B2BB9FCAC7CE59D2B44FB021AAA0FFC116FB
ark:/67375/WNG-3G7QSZ2C-8
ArticleID:ANA21596
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2692580
PMID 19288469
PQID 20118475
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_67316642
proquest_miscellaneous_20118475
pubmed_primary_19288469
pascalfrancis_primary_21557255
crossref_primary_10_1002_ana_21596
crossref_citationtrail_10_1002_ana_21596
wiley_primary_10_1002_ana_21596_ANA21596
istex_primary_ark_67375_WNG_3G7QSZ2C_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2009
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: May 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Anderson VC, Burchiel KJ, Hogarth P, et al. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005; 62: 554-560.
Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain 2005; 128: 2240-2249.
Berney A, Vingerhoets F, Perrin A, et al. Effect on mood of subthalamic DBS for Parkinson's disease: a consecutive series of 24 patients. Neurology 2002; 59: 1427-1429.
Funkiewiez A, Ardouin C, Krack P, et al. Acute psychotropic effects of bilateral subthalamic nucleus stimulation and levodopa in Parkinson's disease. Mov Disord 2003; 18: 524-530.
Hutchison WD, Allan RJ, Opitz H, et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann Neurol 1998; 44: 622-628.
Biseul I, Sauleau P, Haegelen C, et al. Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson's disease. Neuropsychologia 2005; 43: 1054-1059.
Woods SP, Rippeth JD, Conover E, et al. Statistical power of studies examining the cognitive effects of subthalamic nucleus deep brain stimulation in Parkinson's disease. Clin Neuropsychol 2006; 20: 27-38.
Funkiewiez A, Ardouin C, Cools R, et al. Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson's disease. Mov Disord 2006; 21: 1656-1662.
Lang AE, Obeso JA. Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol 2004; 3: 309-316.
Bejjani BP, Houeto JL, Hariz M, et al. Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 2002; 59: 1425-1427.
Rothlind JC, Cockshott RW, Starr PA, Marks WJ Jr. Neuropsychological performance following staged bilateral pallidal or subthalamic nucleus deep brain stimulation for Parkinson's disease. J Int Neuropsychol Soc 2007; 13: 68-79.
Rodriguez RL, Miller K, Bowers D, et al. Mood and cognitive changes with deep brain stimulation. What we know and where we should go. Minerva Med 2005; 96: 125-144.
Okun MS, Foote KD. Subthalamic nucleus vs globus pallidus interna deep brain stimulation, the rematch: will pallidal deep brain stimulation make a triumphant return? Arch Neurol 2005; 62: 533-536.
Weaver F, Follett K, Hur K, et al. Deep brain stimulation in Parkinson disease: a metaanalysis of patient outcomes. J Neurosurg 2005; 103: 956-967.
Berney A, Panisset M, Sadikot AF, et al. Mood stability during acute stimulator challenge in Parkinson's disease patients under long-term treatment with subthalamic deep brain stimulation. Mov Disord 2007; 22: 1093-1096.
Pahwa R, Factor SA, Lyons KE, et al. Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006; 66: 983-995.
Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathologic study of 100 cases of Parkinson's disease. Arch Neurol 1993; 50: 140-148.
Pillon B, Ardouin C, Damier P, et al. Neuropsychological changes between "off" and "on" STN or GPi stimulation in Parkinson's disease. Neurology 2000; 55: 411-418.
Starr PA, Christine CW, Theodosopoulos PV, et al. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 2002; 97: 370-387.
Yelnik J. Functional anatomy of the basal ganglia. Mov Disord 2002; 1(suppl 3): S15-S21.
Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the accuracy of clinical diagnosis in Parkinson's disease: a clinicopathologic study. Neurology 1992; 42: 1142-1146.
Witt K, Daniels C, Herzog J, et al. Differential effects of L-dopa and subthalamic stimulation on depressive symptoms and hedonic tone in Parkinson's disease. J Neuropsychiatry Clin Neurosci 2006; 18: 397-401.
Deuschl G, Herzog J, Kleiner-Fisman G, et al. Deep brain stimulation: postoperative issues. Mov Disord 2006; 21(suppl 14): S219-S237.
Sudhyadhom A, Bova FJ, Foote KD, et al. Limbic, associative, and motor territories within the targets for deep brain stimulation: potential clinical implications. Curr Neurol Neurosci Rep 2007; 7: 278-289.
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181-184.
Lang AE, Obeso JA. Time to move beyond nigrostriatal dopamine deficiency in Parkinson's disease. Ann Neurol 2004; 55: 761-765.
Starkstein SE, Robinson RG. Cerebral lateralization in depression. Am J Psychiatry 1986; 143: 1631-1632.
Starkstein SE, Robinson RG. Mechanism of disinhibition after brain lesions. J Nerv Ment Dis 1997; 185: 108-114.
Funkiewiez A, Ardouin C, Caputo E, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease. J Neurol Neurosurg Psychiatry 2004; 75: 834-839.
Burchiel KJ, Anderson VC, Favre J, Hammerstad JP. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson's disease: results of a randomized, blinded pilot study. Neurosurgery 1999; 45: 1375-1384.
Fedoroff JP, Starkstein SE, Forrester AW, et al. Depression in patients with acute traumatic brain injury. Am J Psychiatry 1992; 149: 918-923.
Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 2007; 318: 1309-1312.
Okun MS, Green J, Saben R, et al. Mood changes with deep brain stimulation of STN and GPi: results of a pilot study. J Neurol Neurosurg Psychiatry 2003; 74: 1584-1586.
Saint-Cyr JA, Trepanier LL, Kumar R, et al. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain 2000; 123 (pt 10): 2091-2108.
Bejjani BP, Damier P, Arnulf I, et al. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 1999; 340: 1476-1480.
Vitek JL, Bakay RA, Hashimoto T, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson's disease. J Neurosurg 1998; 88: 1027-1043.
Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 2001; 345: 956-963.
Bolla-Wilson K, Robinson RG, Starkstein SE, et al. Lateralization of dementia of depression in stroke patients. Am J Psychiatry 1989; 146: 627-634.
Starr PA. Placement of deep brain stimulators into the subthalamic nucleus or globus pallidus internus: technical approach. Stereotact Funct Neurosurg 2002; 79: 118-145.
Sensi M, Eleopra R, Cavallo MA, et al. Explosive-aggressive behavior related to bilateral subthalamic stimulation. Parkinsonism Relat Disord 2004; 10: 247-251.
2002; 59
2002; 97
2002; 79
2005; 62
2002; 1
1999; 340
1992; 149
1999; 45
2004; 3
2006; 18
2005; 43
2003; 18
1992; 55
2003; 74
2007; 13
2001; 345
1998; 44
1998; 88
2004; 10
2004; 55
2004; 75
2006; 20
1986; 143
1993; 50
1989; 146
2006; 21
2006; 66
1997; 185
2005; 103
2000; 55
2005; 128
2005; 96
2007; 7
2000; 123
1992; 42
2007; 318
2007; 22
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
Rodriguez RL (e_1_2_6_14_2) 2005; 96
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Okun MS, Foote KD. Subthalamic nucleus vs globus pallidus interna deep brain stimulation, the rematch: will pallidal deep brain stimulation make a triumphant return? Arch Neurol 2005; 62: 533-536.
– reference: Yelnik J. Functional anatomy of the basal ganglia. Mov Disord 2002; 1(suppl 3): S15-S21.
– reference: Biseul I, Sauleau P, Haegelen C, et al. Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson's disease. Neuropsychologia 2005; 43: 1054-1059.
– reference: Berney A, Vingerhoets F, Perrin A, et al. Effect on mood of subthalamic DBS for Parkinson's disease: a consecutive series of 24 patients. Neurology 2002; 59: 1427-1429.
– reference: Weaver F, Follett K, Hur K, et al. Deep brain stimulation in Parkinson disease: a metaanalysis of patient outcomes. J Neurosurg 2005; 103: 956-967.
– reference: Sudhyadhom A, Bova FJ, Foote KD, et al. Limbic, associative, and motor territories within the targets for deep brain stimulation: potential clinical implications. Curr Neurol Neurosci Rep 2007; 7: 278-289.
– reference: Sensi M, Eleopra R, Cavallo MA, et al. Explosive-aggressive behavior related to bilateral subthalamic stimulation. Parkinsonism Relat Disord 2004; 10: 247-251.
– reference: Starkstein SE, Robinson RG. Mechanism of disinhibition after brain lesions. J Nerv Ment Dis 1997; 185: 108-114.
– reference: Lang AE, Obeso JA. Time to move beyond nigrostriatal dopamine deficiency in Parkinson's disease. Ann Neurol 2004; 55: 761-765.
– reference: Hutchison WD, Allan RJ, Opitz H, et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann Neurol 1998; 44: 622-628.
– reference: Berney A, Panisset M, Sadikot AF, et al. Mood stability during acute stimulator challenge in Parkinson's disease patients under long-term treatment with subthalamic deep brain stimulation. Mov Disord 2007; 22: 1093-1096.
– reference: Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 2001; 345: 956-963.
– reference: Burchiel KJ, Anderson VC, Favre J, Hammerstad JP. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson's disease: results of a randomized, blinded pilot study. Neurosurgery 1999; 45: 1375-1384.
– reference: Vitek JL, Bakay RA, Hashimoto T, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson's disease. J Neurosurg 1998; 88: 1027-1043.
– reference: Rodriguez RL, Miller K, Bowers D, et al. Mood and cognitive changes with deep brain stimulation. What we know and where we should go. Minerva Med 2005; 96: 125-144.
– reference: Deuschl G, Herzog J, Kleiner-Fisman G, et al. Deep brain stimulation: postoperative issues. Mov Disord 2006; 21(suppl 14): S219-S237.
– reference: Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181-184.
– reference: Witt K, Daniels C, Herzog J, et al. Differential effects of L-dopa and subthalamic stimulation on depressive symptoms and hedonic tone in Parkinson's disease. J Neuropsychiatry Clin Neurosci 2006; 18: 397-401.
– reference: Pahwa R, Factor SA, Lyons KE, et al. Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006; 66: 983-995.
– reference: Starr PA, Christine CW, Theodosopoulos PV, et al. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 2002; 97: 370-387.
– reference: Lang AE, Obeso JA. Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol 2004; 3: 309-316.
– reference: Bejjani BP, Houeto JL, Hariz M, et al. Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 2002; 59: 1425-1427.
– reference: Anderson VC, Burchiel KJ, Hogarth P, et al. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005; 62: 554-560.
– reference: Bejjani BP, Damier P, Arnulf I, et al. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 1999; 340: 1476-1480.
– reference: Funkiewiez A, Ardouin C, Krack P, et al. Acute psychotropic effects of bilateral subthalamic nucleus stimulation and levodopa in Parkinson's disease. Mov Disord 2003; 18: 524-530.
– reference: Pillon B, Ardouin C, Damier P, et al. Neuropsychological changes between "off" and "on" STN or GPi stimulation in Parkinson's disease. Neurology 2000; 55: 411-418.
– reference: Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathologic study of 100 cases of Parkinson's disease. Arch Neurol 1993; 50: 140-148.
– reference: Funkiewiez A, Ardouin C, Cools R, et al. Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson's disease. Mov Disord 2006; 21: 1656-1662.
– reference: Okun MS, Green J, Saben R, et al. Mood changes with deep brain stimulation of STN and GPi: results of a pilot study. J Neurol Neurosurg Psychiatry 2003; 74: 1584-1586.
– reference: Saint-Cyr JA, Trepanier LL, Kumar R, et al. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain 2000; 123 (pt 10): 2091-2108.
– reference: Woods SP, Rippeth JD, Conover E, et al. Statistical power of studies examining the cognitive effects of subthalamic nucleus deep brain stimulation in Parkinson's disease. Clin Neuropsychol 2006; 20: 27-38.
– reference: Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain 2005; 128: 2240-2249.
– reference: Fedoroff JP, Starkstein SE, Forrester AW, et al. Depression in patients with acute traumatic brain injury. Am J Psychiatry 1992; 149: 918-923.
– reference: Starkstein SE, Robinson RG. Cerebral lateralization in depression. Am J Psychiatry 1986; 143: 1631-1632.
– reference: Starr PA. Placement of deep brain stimulators into the subthalamic nucleus or globus pallidus internus: technical approach. Stereotact Funct Neurosurg 2002; 79: 118-145.
– reference: Bolla-Wilson K, Robinson RG, Starkstein SE, et al. Lateralization of dementia of depression in stroke patients. Am J Psychiatry 1989; 146: 627-634.
– reference: Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the accuracy of clinical diagnosis in Parkinson's disease: a clinicopathologic study. Neurology 1992; 42: 1142-1146.
– reference: Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 2007; 318: 1309-1312.
– reference: Rothlind JC, Cockshott RW, Starr PA, Marks WJ Jr. Neuropsychological performance following staged bilateral pallidal or subthalamic nucleus deep brain stimulation for Parkinson's disease. J Int Neuropsychol Soc 2007; 13: 68-79.
– reference: Funkiewiez A, Ardouin C, Caputo E, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease. J Neurol Neurosurg Psychiatry 2004; 75: 834-839.
– volume: 20
  start-page: 27
  year: 2006
  end-page: 38
  article-title: Statistical power of studies examining the cognitive effects of subthalamic nucleus deep brain stimulation in Parkinson's disease
  publication-title: Clin Neuropsychol
– volume: 123
  start-page: 2091
  issue: pt 10
  year: 2000
  end-page: 2108
  article-title: Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease
  publication-title: Brain
– volume: 21
  start-page: 1656
  year: 2006
  end-page: 1662
  article-title: Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson's disease
  publication-title: Mov Disord
– volume: 21
  start-page: S219
  issue: suppl 14
  year: 2006
  end-page: S237
  article-title: Deep brain stimulation: postoperative issues
  publication-title: Mov Disord
– volume: 340
  start-page: 1476
  year: 1999
  end-page: 1480
  article-title: Transient acute depression induced by high‐frequency deep‐brain stimulation
  publication-title: N Engl J Med
– volume: 185
  start-page: 108
  year: 1997
  end-page: 114
  article-title: Mechanism of disinhibition after brain lesions
  publication-title: J Nerv Ment Dis
– volume: 62
  start-page: 554
  year: 2005
  end-page: 560
  article-title: Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease
  publication-title: Arch Neurol
– volume: 318
  start-page: 1309
  year: 2007
  end-page: 1312
  article-title: Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism
  publication-title: Science
– volume: 43
  start-page: 1054
  year: 2005
  end-page: 1059
  article-title: Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson's disease
  publication-title: Neuropsychologia
– volume: 146
  start-page: 627
  year: 1989
  end-page: 634
  article-title: Lateralization of dementia of depression in stroke patients
  publication-title: Am J Psychiatry
– volume: 75
  start-page: 834
  year: 2004
  end-page: 839
  article-title: Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 74
  start-page: 1584
  year: 2003
  end-page: 1586
  article-title: Mood changes with deep brain stimulation of STN and GPi: results of a pilot study
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 50
  start-page: 140
  year: 1993
  end-page: 148
  article-title: A clinicopathologic study of 100 cases of Parkinson's disease
  publication-title: Arch Neurol
– volume: 45
  start-page: 1375
  year: 1999
  end-page: 1384
  article-title: Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson's disease: results of a randomized, blinded pilot study
  publication-title: Neurosurgery
– volume: 128
  start-page: 2240
  year: 2005
  end-page: 2249
  article-title: Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow‐up
  publication-title: Brain
– volume: 88
  start-page: 1027
  year: 1998
  end-page: 1043
  article-title: Microelectrode‐guided pallidotomy: technical approach and its application in medically intractable Parkinson's disease
  publication-title: J Neurosurg
– volume: 62
  start-page: 533
  year: 2005
  end-page: 536
  article-title: Subthalamic nucleus vs globus pallidus interna deep brain stimulation, the rematch: will pallidal deep brain stimulation make a triumphant return?
  publication-title: Arch Neurol
– volume: 66
  start-page: 983
  year: 2006
  end-page: 995
  article-title: Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence‐based review): report of the Quality Standards Subcommittee of the American Academy of Neurology
  publication-title: Neurology
– volume: 59
  start-page: 1427
  year: 2002
  end-page: 1429
  article-title: Effect on mood of subthalamic DBS for Parkinson's disease: a consecutive series of 24 patients
  publication-title: Neurology
– volume: 1
  start-page: S15
  issue: suppl 3
  year: 2002
  end-page: S21
  article-title: Functional anatomy of the basal ganglia
  publication-title: Mov Disord
– volume: 7
  start-page: 278
  year: 2007
  end-page: 289
  article-title: Limbic, associative, and motor territories within the targets for deep brain stimulation: potential clinical implications
  publication-title: Curr Neurol Neurosci Rep
– volume: 42
  start-page: 1142
  year: 1992
  end-page: 1146
  article-title: What features improve the accuracy of clinical diagnosis in Parkinson's disease: a clinicopathologic study
  publication-title: Neurology
– volume: 143
  start-page: 1631
  year: 1986
  end-page: 1632
  article-title: Cerebral lateralization in depression
  publication-title: Am J Psychiatry
– volume: 18
  start-page: 524
  year: 2003
  end-page: 530
  article-title: Acute psychotropic effects of bilateral subthalamic nucleus stimulation and levodopa in Parkinson's disease
  publication-title: Mov Disord
– volume: 13
  start-page: 68
  year: 2007
  end-page: 79
  article-title: Neuropsychological performance following staged bilateral pallidal or subthalamic nucleus deep brain stimulation for Parkinson's disease
  publication-title: J Int Neuropsychol Soc
– volume: 97
  start-page: 370
  year: 2002
  end-page: 387
  article-title: Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging‐verified lead locations
  publication-title: J Neurosurg
– volume: 149
  start-page: 918
  year: 1992
  end-page: 923
  article-title: Depression in patients with acute traumatic brain injury
  publication-title: Am J Psychiatry
– volume: 55
  start-page: 181
  year: 1992
  end-page: 184
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico‐pathological study of 100 cases
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 345
  start-page: 956
  year: 2001
  end-page: 963
  article-title: Deep‐brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease
  publication-title: N Engl J Med
– volume: 55
  start-page: 411
  year: 2000
  end-page: 418
  article-title: Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson's disease
  publication-title: Neurology
– volume: 10
  start-page: 247
  year: 2004
  end-page: 251
  article-title: Explosive‐aggressive behavior related to bilateral subthalamic stimulation
  publication-title: Parkinsonism Relat Disord
– volume: 22
  start-page: 1093
  year: 2007
  end-page: 1096
  article-title: Mood stability during acute stimulator challenge in Parkinson's disease patients under long‐term treatment with subthalamic deep brain stimulation
  publication-title: Mov Disord
– volume: 3
  start-page: 309
  year: 2004
  end-page: 316
  article-title: Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough
  publication-title: Lancet Neurol
– volume: 59
  start-page: 1425
  year: 2002
  end-page: 1427
  article-title: Aggressive behavior induced by intraoperative stimulation in the triangle of Sano
  publication-title: Neurology
– volume: 18
  start-page: 397
  year: 2006
  end-page: 401
  article-title: Differential effects of L‐dopa and subthalamic stimulation on depressive symptoms and hedonic tone in Parkinson's disease
  publication-title: J Neuropsychiatry Clin Neurosci
– volume: 44
  start-page: 622
  year: 1998
  end-page: 628
  article-title: Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease
  publication-title: Ann Neurol
– volume: 79
  start-page: 118
  year: 2002
  end-page: 145
  article-title: Placement of deep brain stimulators into the subthalamic nucleus or globus pallidus internus: technical approach
  publication-title: Stereotact Funct Neurosurg
– volume: 103
  start-page: 956
  year: 2005
  end-page: 967
  article-title: Deep brain stimulation in Parkinson disease: a metaanalysis of patient outcomes
  publication-title: J Neurosurg
– volume: 96
  start-page: 125
  year: 2005
  end-page: 144
  article-title: Mood and cognitive changes with deep brain stimulation. What we know and where we should go
  publication-title: Minerva Med
– volume: 55
  start-page: 761
  year: 2004
  end-page: 765
  article-title: Time to move beyond nigrostriatal dopamine deficiency in Parkinson's disease
  publication-title: Ann Neurol
– ident: e_1_2_6_40_2
  doi: 10.1176/ajp.143.12.1631
– ident: e_1_2_6_11_2
  doi: 10.1002/mds.21029
– ident: e_1_2_6_15_2
  doi: 10.1093/brain/awh571
– ident: e_1_2_6_41_2
  doi: 10.1097/00005053-199702000-00007
– ident: e_1_2_6_28_2
  doi: 10.1212/01.WNL.0000031428.31861.23
– ident: e_1_2_6_19_2
  doi: 10.1002/mds.10138
– ident: e_1_2_6_16_2
  doi: 10.1093/brain/123.10.2091
– ident: e_1_2_6_31_2
  doi: 10.1056/NEJM199905133401905
– ident: e_1_2_6_26_2
  doi: 10.1159/000070828
– ident: e_1_2_6_39_2
  doi: 10.1176/ajp.149.7.918
– ident: e_1_2_6_33_2
  doi: 10.1002/mds.21245
– volume: 96
  start-page: 125
  year: 2005
  ident: e_1_2_6_14_2
  article-title: Mood and cognitive changes with deep brain stimulation. What we know and where we should go
  publication-title: Minerva Med
– ident: e_1_2_6_27_2
  doi: 10.3171/jns.2002.97.2.0370
– ident: e_1_2_6_24_2
  doi: 10.1002/ana.410440407
– ident: e_1_2_6_5_2
  doi: 10.3171/jns.2005.103.6.0956
– ident: e_1_2_6_32_2
  doi: 10.1002/mds.20957
– ident: e_1_2_6_21_2
  doi: 10.1212/WNL.42.6.1142
– ident: e_1_2_6_23_2
  doi: 10.1136/jnnp.55.3.181
– ident: e_1_2_6_35_2
  doi: 10.1016/j.neuropsychologia.2004.10.006
– ident: e_1_2_6_18_2
  doi: 10.1007/s11910-007-0043-1
– ident: e_1_2_6_3_2
  doi: 10.1212/01.wnl.0000215250.82576.87
– ident: e_1_2_6_22_2
  doi: 10.1001/archneur.1993.00540020018011
– ident: e_1_2_6_38_2
  doi: 10.1176/ajp.146.5.627
– ident: e_1_2_6_34_2
  doi: 10.1212/01.WNL.0000032756.14298.18
– ident: e_1_2_6_37_2
  doi: 10.1017/S1355617707070105
– ident: e_1_2_6_7_2
  doi: 10.1097/00006123-199912000-00024
– ident: e_1_2_6_13_2
  doi: 10.1212/WNL.55.3.411
– ident: e_1_2_6_17_2
  doi: 10.1136/jnnp.74.11.1584
– ident: e_1_2_6_9_2
  doi: 10.1002/ana.20102
– ident: e_1_2_6_12_2
  doi: 10.1002/mds.10441
– ident: e_1_2_6_30_2
  doi: 10.1126/science.1146157
– ident: e_1_2_6_2_2
  doi: 10.1001/archneur.62.4.533
– ident: e_1_2_6_10_2
  doi: 10.1136/jnnp.2002.009803
– ident: e_1_2_6_36_2
  doi: 10.1176/jnp.2006.18.3.397
– ident: e_1_2_6_6_2
  doi: 10.1001/archneur.62.4.554
– ident: e_1_2_6_8_2
  doi: 10.1016/S1474-4422(04)00740-9
– ident: e_1_2_6_4_2
  doi: 10.1056/NEJMoa000827
– ident: e_1_2_6_20_2
  doi: 10.1080/13854040500203290
– ident: e_1_2_6_29_2
  doi: 10.1016/j.parkreldis.2004.01.007
– ident: e_1_2_6_25_2
  doi: 10.3171/jns.1998.88.6.1027
SSID ssj0009610
Score 2.4885018
Snippet Objective Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi)...
Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi) deep brain...
Objective Our aim was to compare in a prospective blinded study the cognitive and mood effects of subthalamic nucleus (STN) vs. globus pallidus interna (GPi)...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 586
SubjectTerms Adult
Aged
Biological and medical sciences
Cognition Disorders - etiology
Cognition Disorders - therapy
Deep Brain Stimulation - methods
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Double-Blind Method
Electric Stimulation - methods
Female
Globus Pallidus - physiology
Humans
Male
Medical sciences
Middle Aged
Mood Disorders - etiology
Mood Disorders - therapy
Motor Activity - physiology
Neurology
Neuropsychological Tests
Parkinson Disease - complications
Parkinson Disease - therapy
Prospective Studies
Psychiatric Status Rating Scales
Subthalamic Nucleus - physiology
Title Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: The COMPARE Trial
URI https://api.istex.fr/ark:/67375/WNG-3G7QSZ2C-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21596
https://www.ncbi.nlm.nih.gov/pubmed/19288469
https://www.proquest.com/docview/20118475
https://www.proquest.com/docview/67316642
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KBfFFrV-N2rqIqC-5Jtl8bOrTcfQD4U4tLfZBWHazGzy8Joe5gPgf-F93ZjfJcVJF5B4SwuTITmZ2fpuZ_Q0hr1TCtQ6SyI_LooAFisl8CZHMN0USKQg5sbFs-9NZenoRv79MLrfIu34vjOOHGD64oWfY-RodXKrmYE0aKis5gniVI9021mohIDpbU0flqWUiwDSbn4Qs7lmFguhguHMjFt1Ctf7A2kjZgHpK19fiJuC5iWNtIDq-R770Q3D1J99G7UqNip-_sTv-5xjvk7sdQKVjZ1E7ZMtUD8jtaZeCf0h-TVzBUV1RWWl6VdeaziuKu6ftRrI3De2SPni5adXqq1xg03taIXVy21AsBIEDUpHAYSkXi7mGk7n7Nkm1MUuqsHMFhennqmsvdkjBoOnkw_Tj-OyInqPbPCIXx0fnk1O_6-fgw4tnqa9ZWoZMJZKF8MviVAaFlkYGIec6VSw0BiaggBstCy7LzMisyIo0MgA5M65z9phsV3VldgmVgYa1UARoioWx4mWuTcxkmTNdGgAggUfe9m9WFB3ZOfbcWAhH0xwJUK2wqvXIy0F06Rg-bhJ6bc1jkAClYklclojPsxPBTrJPMD1NBPfI_ob9DDfA3yQZPLNHXvQGJcCTMT0jK1O3jUAoBljhLxIpthmDBaNHnjhLXD9wHnFAkjmM29rTn0cixrOxPXn676LPyB2XRMM6z-dke_W9NXuAxVZq3zrdNcgCL4A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VVgJeuA9ztCuEgBenttcn4iWK2gZoAlSp2he0WnvXIiK1IxxLiH_Av2ZmfURBBSHkB1vxOPKOZ3a-3Z39BuB5GsRKOYFn-3mW4QBFR7bESGbrLPBSDDm-Nmz7k2k4PvXfnQfnW_Cm2wvT8EP0E27kGaa_JgenCen9NWuoLOQAA1YSXoEdquhtBlQna_KoJDRcBLTQZuNdv-MVcrz9_tGNaLRDiv1O2ZGyQgXlTWWLy6DnJpI1oejwJnzuGtFkoHwd1Kt0kP34jd_xf1t5C260GJUNG6O6DVu6uANXJ-0q_F34OWpyjsqCyUKxi7JUbF4w2kBt9pK9rFi77kM_V3W6-iIXVPeeFcSeXFeMckHwRGwkeFrKxWKu8GLeTE8ypfWSpVS8gmEPdNFWGHvN0KbZ6MPk4_DkgM3Ic-7B6eHBbDS225IONn57HtqKh7nL00ByF4_ID6WTKaml48axClPuao19kBNrJbNY5pGWURZloacRdUaxSvh92C7KQj8EJh2FwyEPARV3_TTOE6V9LvOEq1wjBnEseNV9WpG1fOdUdmMhGqZmT6BqhVGtBc960WVD8nGZ0AtjH70EKpWy4qJAnE2PBD-KPmEPNRKxBbsbBtQ_gH8TRPjOFux1FiXQmWmFRha6rCtBaAzhwl8kQqo0hmNGCx40prh-4cSLEUwm2G5jUH9uiRhOh-bi0b-L7sG18WxyLI7fTt8_huvNmhqlfT6B7dW3Wj9FaLZKd40H_gKcBDOb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swED91rVTtZd8f7KO1pmnbCylgMGZ7itKm3UeyrmrVPkyyDDZatBSiEaRp_8H-650xEGXqpmnKAwgdET7ufD9z598BPE8jrpQXBW6YZxkuUHTsSoxkrs6iIMWQE-qGbX8yZUdn4buL6GID3nR7YSw_RP_BzXhGM18bB1-ofG9FGioLOcB4lbBrsBUyjxuT3j9ZcUclrKEiMHk2N_Jp2NEKecFef-taMNoyev1uiiNlhfrJbWOLq5DnOpBtItH4JnzuxmALUL4O6mU6yH78Ru_4n4O8BTdahEqG1qRuw4Yu7sD2pM3B34WfI1txVBZEFopclqUis4KY7dPNTrKXFWmzPuZyVafLL3Juut6TwnAn1xUxlSB4MFwkeFjI-Xym8GRmP04SpfWCpKZ1BcH557LtL_aaoEWT0cfJ8fDkgJwav7kHZ-OD09GR2zZ0cPHNU-YqynKfppGkPv7ikEkvU1JLz-dcsZT6WuMM5HGtZMZlHmsZZ3HGAo2YM-YqofdhsygL_RCI9BQuhgKEU9QPU54nSodU5glVuUYE4jnwqnuzImvZzk3TjbmwPM2BQNWKRrUOPOtFF5bi4yqhF4159BKoVFMTF0fifHoo6GH8CeenkeAO7KzZT38D_k0U4zM7sNsZlEBXNvkZWeiyroTBYggW_iLBTJ8xXDE68MBa4uqBk4AjlExw3I09_XkkYjgdNieP_l10F7aP98fiw9vp-8dw3SbUTM3nE9hcfqv1U8Rly3Sn8b9f_cMyUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognition+and+mood+in+Parkinson%27s+disease+in+subthalamic+nucleus+versus+globus+pallidus+interna+deep+brain+stimulation%3A+The+COMPARE+Trial&rft.jtitle=Annals+of+neurology&rft.au=Okun%2C+Michael+S.&rft.au=Fernandez%2C+Hubert+H.&rft.au=Wu%2C+Samuel+S.&rft.au=Kirsch%E2%80%90Darrow%2C+Lindsey&rft.date=2009-05-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=65&rft.issue=5&rft.spage=586&rft.epage=595&rft_id=info:doi/10.1002%2Fana.21596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ana_21596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon