Factors Limiting Device Efficiency in Organic Photovoltaics

The power conversion efficiency of the most efficient organic photovoltaic (OPV) cells has recently increased to over 10%. To enable further increases, the factors limiting the device efficiency in OPV must be identified. In this review, the operational mechanism of OPV cells is explained and the de...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 25; no. 13; pp. 1847 - 1858
Main Authors Janssen, René A. J., Nelson, Jenny
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 04.04.2013
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The power conversion efficiency of the most efficient organic photovoltaic (OPV) cells has recently increased to over 10%. To enable further increases, the factors limiting the device efficiency in OPV must be identified. In this review, the operational mechanism of OPV cells is explained and the detailed balance limit to photovoltaic energy conversion, as developed by Shockley and Queisser, is outlined. The various approaches that have been developed to estimate the maximum practically achievable efficiency in OPV are then discussed, based on empirical knowledge of organic semiconductor materials. Subsequently, approaches made to adapt the detailed balance theory to incorporate some of the fundamentally different processes in organic solar cells that originate from using a combination of two complementary, donor and acceptor, organic semiconductors using thermodynamic and kinetic approaches are described. The more empirical formulations to the efficiency limits provide estimates of 10–12%, but the more fundamental descriptions suggest limits of 20–24% to be reachable in single junctions, similar to the highest efficiencies obtained for crystalline silicon p‐n junction solar cells. Closing this gap sets the stage for future materials research and development of OPV. The power conversion efficiency of donor‐acceptor organic solar cells now reaches over 10% in single‐junction and tandem cells. Empirical models suggest that the maximum efficiency may be limited at 10–12%, yet recent, more refined detailed‐balance models indicate that, under favorable conditions, efficiencies in the range of 20–24% can be achieved.
Bibliography:ArticleID:ADMA201202873
istex:F64CF6BA2093F9663D7D005F7A54344D9C3990E4
ark:/67375/WNG-TD9H7T15-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201202873