Molecular Mechanisms of Acetaldehyde-Mediated Carcinogenesis in Squamous Epithelium

Acetaldehyde is a highly reactive compound that causes various forms of damage to DNA, including DNA adducts, single- and/or double-strand breaks (DSBs), point mutations, sister chromatid exchanges (SCEs), and DNA–DNA cross-links. Among these, DNA adducts such as N2-ethylidene-2′-deoxyguanosine, N2-...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 18; no. 9; p. 1943
Main Authors Mizumoto, Ayaka, Ohashi, Shinya, Hirohashi, Kenshiro, Amanuma, Yusuke, Matsuda, Tomonari, Muto, Manabu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.09.2017
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms18091943

Cover

More Information
Summary:Acetaldehyde is a highly reactive compound that causes various forms of damage to DNA, including DNA adducts, single- and/or double-strand breaks (DSBs), point mutations, sister chromatid exchanges (SCEs), and DNA–DNA cross-links. Among these, DNA adducts such as N2-ethylidene-2′-deoxyguanosine, N2-ethyl-2′-deoxyguanosine, N2-propano-2′-deoxyguanosine, and N2-etheno-2′-deoxyguanosine are central to acetaldehyde-mediated DNA damage because they are associated with the induction of DNA mutations, DNA–DNA cross-links, DSBs, and SCEs. Acetaldehyde is produced endogenously by alcohol metabolism and is catalyzed by aldehyde dehydrogenase 2 (ALDH2). Alcohol consumption increases blood and salivary acetaldehyde levels, especially in individuals with ALDH2 polymorphisms, which are highly associated with the risk of squamous cell carcinomas in the upper aerodigestive tract. Based on extensive epidemiological evidence, the International Agency for Research on Cancer defined acetaldehyde associated with the consumption of alcoholic beverages as a “group 1 carcinogen” (definite carcinogen) for the esophagus and/or head and neck. In this article, we review recent advances from studies of acetaldehyde-mediated carcinogenesis in the squamous epithelium, focusing especially on acetaldehyde-mediated DNA adducts. We also give attention to research on acetaldehyde-mediated DNA repair pathways such as the Fanconi anemia pathway and refer to our studies on the prevention of acetaldehyde-mediated DNA damage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms18091943