Further observations on the mean velocity distribution in fully developed pipe flow

The measurements by Zagarola & Smits (1998) of mean velocity profiles in fully developed turbulent pipe flow are repeated using a smaller Pitot probe to reduce the uncertainties due to velocity gradient corrections. A new static pressure correction (McKeon & Smits 2002) is used in analysing...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 501; pp. 135 - 147
Main Authors McKEON, B. J., LI, J., JIANG, W., MORRISON, J. F., SMITS, A. J.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.02.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The measurements by Zagarola & Smits (1998) of mean velocity profiles in fully developed turbulent pipe flow are repeated using a smaller Pitot probe to reduce the uncertainties due to velocity gradient corrections. A new static pressure correction (McKeon & Smits 2002) is used in analysing all data and leads to significant differences from the Zagarola & Smits conclusions. The results confirm the presence of a power-law region near the wall and, for Reynolds numbers greater than $230\,{\times}\,10^3$ ($R^+\,{>}\,5\,{\times}\,10^3$), a logarithmic region further out, but the limits of these regions and some of the constants differ from those reported by Zagarola & Smits. In particular, the log law is found for $600\,{<}\, y^+\,{<}\,0.12R^+$ (instead of $600\,{<}\,y^+\,{<}\,0.07R^+$), and the von Kármán constant $\kappa$, the additive constant $B$ for the log law using inner flow scaling, and the additive constant $B^*$ for the log law using outer scaling are found to be $0.421 \pm 0.002$, $5.60 \pm 0.08 $ and $1.20 \pm 0.10$, respectively, with 95% confidence level (compared with $0.436 \pm 0.002$, $6.15 \pm 0.08$, and $1.51 \pm 0.03$ found by Zagarola & Smits). The data also confirm that the pipe flow data for Re$_D\,{\le}\,13.6\,{\times}\,10^6$ (as a minimum) are not affected by surface roughness.
Bibliography:PII:S0022112003007304
istex:09BFBD2C64657A927094C0E89001A2D2773133BE
ark:/67375/6GQ-6P2N2PVM-D
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112003007304