Cardioprotective Effect of Taxifolin against Isoproterenol-Induced Cardiac Injury through Decreasing Oxidative Stress, Inflammation, and Cell Death, and Activating Nrf2/HO-1 in Mice

Oxidative stress and inflammation are key components in cardiovascular diseases and heart dysfunction. Herein, we evaluated the protective effects of (+)-taxifolin (TAX), a potent flavonoid with significant antioxidant and anti-inflammatory actions, on myocardial oxidative tissue injury, inflammatio...

Full description

Saved in:
Bibliographic Details
Published inBiomolecules (Basel, Switzerland) Vol. 12; no. 11; p. 1546
Main Authors Obeidat, Heba M, Althunibat, Osama Y, Alfwuaires, Manal A, Aladaileh, Saleem H, Algefare, Abdulmohsen I, Almuqati, Afaf F, Alasmari, Fawaz, Aldal’in, Hammad Khalifeh, Alanezi, Abdulkareem A, Alsuwayt, Bader, Abukhalil, Mohammad H
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Oxidative stress and inflammation are key components in cardiovascular diseases and heart dysfunction. Herein, we evaluated the protective effects of (+)-taxifolin (TAX), a potent flavonoid with significant antioxidant and anti-inflammatory actions, on myocardial oxidative tissue injury, inflammation, and cell death, using a mouse model of isoproterenol (ISO)-induced acute myocardial injury. Mice were given TAX (25 and 50 mg/kg, orally) for 14 days before receiving two subsequent injections of ISO (100 mg/kg, s.c.) at an interval of 24 h on the 15th and 16th days. The ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), along with several histopathological changes. The ISO also induced increased malondialdehyde (MDA) with concomitant declined myocardial glutathione level and antioxidant enzymes activities. Moreover, ISO-induced heart injury was accompained with elevated cardiac NF-κB p65, TNF-α, IL-1β, Bax, and caspase-3, as well as decreased Bcl-2, Nrf2, and HO-1. Remarkably, TAX reduced the severity of cardiac injury, oxidative stress, inflammation, and cell death, while enhancing antioxidants, Bcl-2, and Nrf2/HO-1 signaling in ISO-injected mice. In conclusion, TAX protects against ISO-induced acute myocardial injury via activating the Nrf2/HO-1 signaling pathway and attenuating the oxidative tissue injury and key regulators of inflammatory response and apoptosis. Thus, our findings imply that TAX may constitute a new cardioprotective therapy against acute MI, which undoubtedly deserves further exploration in upcoming human trials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2218-273X
2218-273X
DOI:10.3390/biom12111546