Hash functions from superspecial genus-2 curves using Richelot isogenies
In 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field 𝔽 . In 2019 Flynn and Ti pointed out that Takashima’s hash function is ins...
Saved in:
Published in | Journal of mathematical cryptology Vol. 14; no. 1; pp. 268 - 292 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
07.08.2020
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 1862-2976 1862-2984 |
DOI | 10.1515/jmc-2019-0021 |
Cover
Loading…
Abstract | In 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field 𝔽
. In 2019 Flynn and Ti pointed out that Takashima’s hash function is insecure due to the existence of small isogeny cycles. We revisit the construction and show that it can be repaired by imposing a simple restriction, which moreover clarifies the security analysis. The runtime of the resulting hash function is dominated by the extraction of 3 square roots for every block of 3 bits of the message, as compared to one square root per bit in the elliptic curve case; however in our setting the extractions can be parallelized and are done in a finite field whose bit size is reduced by a factor 3. Along the way we argue that the full supersingular isogeny graph is the wrong context in which to study higher-dimensional analogues of Charles, Goren and Lauter’s hash function, and advocate the use of the superspecial subgraph, which is the natural framework in which to view Takashima’s 𝔽
-friendly starting curve. |
---|---|
AbstractList | Last year Takashima proposed a version of Charles, Goren and Lauter's hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field Fp2. In a very recent paper Flynn and Ti point out that Takashima's hash function is insecure due to the existence of small isogeny cycles. We revisit the construction and show that it can be repaired by imposing a simple restriction, which moreover clarifies the security analysis. The runtime of the resulting hash function is dominated by the extraction of 3 square roots for every block of 3 bits of the message, as compared to one square root per bit in the elliptic curve case; however in our setting the extractions can be parallelized and are done in a finite field whose bit size is reduced by a factor 3. Along the way we argue that the full supersingular isogeny graph is the wrong context in which to study higher-dimensional analogues of Charles, Goren and Lauter's hash function, and advocate the use of the superspecial subgraph, which is the natural framework in which to view Takashima's Fp2-friendly starting curve. In 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field ð"½p2. In 2019 Flynn and Ti pointed out that Takashima’s hash function is insecure due to the existence of small isogeny cycles. We revisit the construction and show that it can be repaired by imposing a simple restriction, which moreover clarifies the security analysis. The runtime of the resulting hash function is dominated by the extraction of 3 square roots for every block of 3 bits of the message, as compared to one square root per bit in the elliptic curve case; however in our setting the extractions can be parallelized and are done in a finite field whose bit size is reduced by a factor 3. Along the way we argue that the full supersingular isogeny graph is the wrong context in which to study higher-dimensional analogues of Charles, Goren and Lauter’s hash function, and advocate the use of the superspecial subgraph, which is the natural framework in which to view Takashima’s ð"½p2-friendly starting curve. In 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field 𝔽p2. In 2019 Flynn and Ti pointed out that Takashima’s hash function is insecure due to the existence of small isogeny cycles. We revisit the construction and show that it can be repaired by imposing a simple restriction, which moreover clarifies the security analysis. The runtime of the resulting hash function is dominated by the extraction of 3 square roots for every block of 3 bits of the message, as compared to one square root per bit in the elliptic curve case; however in our setting the extractions can be parallelized and are done in a finite field whose bit size is reduced by a factor 3. Along the way we argue that the full supersingular isogeny graph is the wrong context in which to study higher-dimensional analogues of Charles, Goren and Lauter’s hash function, and advocate the use of the superspecial subgraph, which is the natural framework in which to view Takashima’s 𝔽p2-friendly starting curve. In 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field p 2 . In 2019 Flynn and Ti pointed out that Takashima’s hash function is insecure due to the existence of small isogeny cycles. We revisit the construction and show that it can be repaired by imposing a simple restriction, which moreover clarifies the security analysis. The runtime of the resulting hash function is dominated by the extraction of 3 square roots for every block of 3 bits of the message, as compared to one square root per bit in the elliptic curve case; however in our setting the extractions can be parallelized and are done in a finite field whose bit size is reduced by a factor 3. Along the way we argue that the full supersingular isogeny graph is the wrong context in which to study higher-dimensional analogues of Charles, Goren and Lauter’s hash function, and advocate the use of the superspecial subgraph, which is the natural framework in which to view Takashima’s p 2 -friendly starting curve. In 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field 𝔽 . In 2019 Flynn and Ti pointed out that Takashima’s hash function is insecure due to the existence of small isogeny cycles. We revisit the construction and show that it can be repaired by imposing a simple restriction, which moreover clarifies the security analysis. The runtime of the resulting hash function is dominated by the extraction of 3 square roots for every block of 3 bits of the message, as compared to one square root per bit in the elliptic curve case; however in our setting the extractions can be parallelized and are done in a finite field whose bit size is reduced by a factor 3. Along the way we argue that the full supersingular isogeny graph is the wrong context in which to study higher-dimensional analogues of Charles, Goren and Lauter’s hash function, and advocate the use of the superspecial subgraph, which is the natural framework in which to view Takashima’s 𝔽 -friendly starting curve. |
Author | Decru, Thomas Smith, Benjamin Castryck, Wouter |
Author_xml | – sequence: 1 givenname: Wouter surname: Castryck fullname: Castryck, Wouter email: wouter.castryck@esat.kuleuven.be organization: imec-COSIC, Department of Electrical Engineering, KU Leuven, France – sequence: 2 givenname: Thomas surname: Decru fullname: Decru, Thomas email: thomas.decru@esat.kuleuven.be organization: imec-COSIC, Department of Electrical Engineering, KU Leuven, France – sequence: 3 givenname: Benjamin surname: Smith fullname: Smith, Benjamin email: smith@lix.polytechnique.fr organization: Inria and École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France |
BackLink | https://inria.hal.science/hal-02067885$$DView record in HAL |
BookMark | eNp1kc1r3DAQxUVJofk65m7oqQc30liyZXoKoe0GFgolPQvtaLyrxWttJTsl_33kuGlpaU8aDb_3mJl3xk6GMBBjV4K_F0qo6_0BS-CiLTkH8YqdCl1DCa2WJ7_qpn7DzlLac143WotTtlrZtCu6acDRhyEVXQyHIk1HiulI6G1fbGmYUgkFTvGBUjElP2yLrx531Iex8ClkwFO6YK872ye6_Pmes2-fPt7frsr1l893tzfrEhXAWGpnUVecc6pR6Q1I226kanDTWq2clZ1qXKdrCw6dlJIEKEG17HRDFWHbVOfsbvF1we7NMfqDjY8mWG-eGyFujY2jx54MuRZmB6c4SWzBalmh2hDkn2iRZ693i9fO9n9YrW7WZu5xeL6TeoDMvl3YYwzfJ0qj2YcpDnlVA7KSIJpGVZmqFgpjSClSZ9CPdj7tGK3vjeBmjsrkqMwclZmjyqryL9XLMP_jPyz8D9uPFB1t4_SYi98j_VMnpIBaV09RsKoY |
CitedBy_id | crossref_primary_10_1007_s40993_024_00600_y crossref_primary_10_1016_j_ffa_2024_102445 crossref_primary_10_1016_j_ffa_2025_102579 crossref_primary_10_1134_S1990478924010101 crossref_primary_10_4153_S0008414X23000676 crossref_primary_10_1186_s42400_023_00189_2 crossref_primary_10_1007_s10623_024_01366_1 crossref_primary_10_1016_j_jalgebra_2021_08_020 crossref_primary_10_1090_mcom_4036 crossref_primary_10_1007_s11786_023_00571_w crossref_primary_10_1002_spe_3039 crossref_primary_10_1007_s00145_022_09435_1 |
Cites_doi | 10.1006/jnth.1996.0026 10.4134/BKMS.2009.46.4.789 10.1007/s00145-007-9002-x 10.1142/9789812701640_0006 10.1090/crmp/047/05 10.1515/jmc-2012-0015 10.1016/j.tcs.2009.08.030 10.4153/CJM-2011-039-3 10.1112/S1461157014000151 |
ContentType | Journal Article |
Copyright | This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES DOA |
DOI | 10.1515/jmc-2019-0021 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1862-2984 |
EndPage | 292 |
ExternalDocumentID | oai_doaj_org_article_ed924e12d50e4c92a843c5be2e4c19c0 oai_HAL_hal_02067885v2 10_1515_jmc_2019_0021 10_1515_jmc_2019_0021141268 |
GroupedDBID | 0R~ 0~D 4.4 AAFPC AAFWJ AAGVJ AAQCX AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ABYKJ ACEFL ACGFS ACIWK ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM BAKPI BBCWN BCIFA CFGNV CS3 EBS GROUPED_DOAJ HZ~ IY9 J9A M48 O9- OK1 P2P PQQKQ QD8 RDG SA. SLJYH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c522t-8dac83000e6c58b24a9b457cb9a85da4f57df86a2dcd444e1251e64f87e3ec973 |
IEDL.DBID | DOA |
ISSN | 1862-2976 |
IngestDate | Wed Aug 27 01:26:59 EDT 2025 Thu Aug 21 07:07:26 EDT 2025 Mon Jun 30 10:00:38 EDT 2025 Thu Apr 24 22:57:50 EDT 2025 Tue Jul 01 04:26:42 EDT 2025 Thu Jul 10 10:38:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-8dac83000e6c58b24a9b457cb9a85da4f57df86a2dcd444e1251e64f87e3ec973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6701-1420 |
OpenAccessLink | https://doaj.org/article/ed924e12d50e4c92a843c5be2e4c19c0 |
PQID | 2434217753 |
PQPubID | 2030086 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed924e12d50e4c92a843c5be2e4c19c0 hal_primary_oai_HAL_hal_02067885v2 proquest_journals_2434217753 crossref_citationtrail_10_1515_jmc_2019_0021 crossref_primary_10_1515_jmc_2019_0021 walterdegruyter_journals_10_1515_jmc_2019_0021141268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-07 |
PublicationDateYYYYMMDD | 2020-08-07 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of mathematical cryptology |
PublicationYear | 2020 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | Tani, S. (j_jmc-2019-0021_ref_030) 2009; 410 Kohel, D.; Lauter, K.; Petit, C.; Tignol, J.-P. (j_jmc-2019-0021_ref_033) 2014; 17 Kani, E. (j_jmc-2019-0021_ref_025) 1997; 485 Katsura, T.; Takashima, K. (j_jmc-2019-0021_ref_028) 2020 Charles, D. X.; Goren, E. Z.; Lauter, K. E. (j_jmc-2019-0021_ref_013) 2009; 47 Ibukiyama, T.; Katsura, T.; Oort, F. (j_jmc-2019-0021_ref_021) 1986; 57 De Feo, L.; Jao, D.; Plût, J. (j_jmc-2019-0021_ref_005) 2014; 8 Charles, D. X.; Lauter, K. E.; Goren, E. Z. (j_jmc-2019-0021_ref_003) 2009; 22 Howe, E. W.; Leprévost, F.; Poonen, B. (j_jmc-2019-0021_ref_024) 2000; 12 Ibukiyama, T.; Katsura, T. (j_jmc-2019-0021_ref_020) 1994; 91 Jordan, B. W.; Zaytman, Y. (j_jmc-2019-0021_ref_035) 2020 Azarderakhsh, R.; Koziel, B.; Campagna, M.; LaMacchia, B.; Costello, C.; Longa, P.; De Feo, L.; Naehrig, M.; Hess, B.; Renes, J.; Jalali, A.; Soukharev, V.; Jao, D.; Urbanik, D. (j_jmc-2019-0021_ref_012) 2017 Doliskani, J.; Pereira, G. C.; Barreto, P. S. (j_jmc-2019-0021_ref_032) 2017 Howe, E. W. (j_jmc-2019-0021_ref_019) 1996; 56 Takashima, K.; Yoshida, R. (j_jmc-2019-0021_ref_015) 2009; 46 Bruin, N.; Doerksen, K. (j_jmc-2019-0021_ref_026) 2011; 63 Couveignes, J.-M. (j_jmc-2019-0021_ref_001) 2006 (ref391) 2014; 8 (ref541) 1994; 91 (ref381) 2011 (ref581) 2000; 12 (ref251) 2011; 63 (ref511) 1998 (ref121) 2009; 47 (ref151) 2019 (ref261) 2009; 106 (ref521) 1994 (ref641) 2009; 410 (ref201) 1986; 57 (ref101) 2019 (ref271) 2020 (ref671) 2014; 17 (ref301) 2019 (ref601) 2011; 63 (ref351) 2006 (ref31) 2011 (ref341) 2020 (ref501) 2019 (ref411) 2018 (ref371) 2009; 22 (ref431) 2019 (ref171) 1994 (ref141) 2009; 46 (ref531) 1996; 56 (ref11) 2004 (ref451) 2019 (ref41) 2014; 8 (ref131) 2018; 29 (ref661) 2017 (ref461) 2017 (ref681) 2018 (ref21) 2009; 22 (ref651) 2019 (ref551) 1986; 57 (ref321) 2014; 17 (ref211) 2005 (ref181) 1996; 56 (ref221) 2005 (ref231) 2000; 12 (ref691) 2020 (ref491) 2009; 46 (ref71) 2019 (ref481) 2018; 29 (ref81) 2019 (ref51) 2018 (ref61) 2018 (ref91) 2019 (ref631) 2020 (ref571) 2005 (ref611) 2009; 106 (ref561) 2005 (ref621) 2020 (ref241) 1997; 485 (ref111) 2017 (ref281) 2020 (ref361) 2004 (ref331) 2018 (ref421) 2019 (ref161) 1998 (ref311) 2017 (ref471) 2009; 47 (ref191) 1994; 91 (ref01) 2006 (ref401) 2018 (ref591) 1997; 485 (ref291) 2009; 410 (ref441) 2019 |
References_xml | – volume: 91 start-page: 37 issue: 1 year: 1994 end-page: 46 ident: j_jmc-2019-0021_ref_020 article-title: “On the field of definition of superspecial polarized abelian varieties and type numbers,” publication-title: Compositio Mathematica – volume: 485 start-page: 93 year: 1997 end-page: 122 ident: j_jmc-2019-0021_ref_025 article-title: “The number of curves of genus two with elliptic differentials,” publication-title: Journal für die reine und angewandte Mathematik – year: 2006 ident: j_jmc-2019-0021_ref_001 article-title: “Hard homogeneous spaces.” publication-title: Cryptology ePrint Archive, Report 2006/291 – volume: 8 start-page: 209 issue: 3 year: 2014 end-page: 247 ident: j_jmc-2019-0021_ref_005 article-title: “Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies,” publication-title: Journal of Mathematical Cryptology – volume: 12 start-page: 315 issue: 3 year: 2000 end-page: 364 ident: j_jmc-2019-0021_ref_024 article-title: “Large torsion subgroups of split jacobians of curves of genus two or three,” publication-title: Forum Mathematicum – volume: 63 start-page: 992 issue: 5 year: 2011 end-page: 1024 ident: j_jmc-2019-0021_ref_026 article-title: “The arithmetic of genus two curves with (4, 4)-split Jacobians,” publication-title: Canadian Journal of Mathematics – volume: 47 start-page: 53 year: 2009 end-page: 63 ident: j_jmc-2019-0021_ref_013 article-title: “Families of Ramanujan graphs and quaternion algebras,” publication-title: Groups and symmetries: from Neolithic Scots to John McKay – volume: 56 start-page: 381 year: 1996 end-page: 390 ident: j_jmc-2019-0021_ref_019 article-title: “Constructing distinct curves with isomorphic Jacobians,” publication-title: J. Number Theory – year: 2017 ident: j_jmc-2019-0021_ref_032 article-title: “Faster cryptographic hash function from supersingular isogeny graphs.” publication-title: Cryptology ePrint Archive, Report 2017/1202 – volume: 22 start-page: 93 issue: 1 year: 2009 end-page: 113 ident: j_jmc-2019-0021_ref_003 article-title: “Cryptographic hash functions from expander graphs,” publication-title: Journal of Cryptology – year: 2020 ident: j_jmc-2019-0021_ref_028 article-title: “Counting superspecial Richelot isogenies and its cryptographic application.” publication-title: Cornell University arXiv, Report 2003.00633 – year: 2017 ident: j_jmc-2019-0021_ref_012 publication-title: “Supersingular isogeny key encapsulation.” – volume: 46 start-page: 789 issue: 4 year: 2009 end-page: 802 ident: j_jmc-2019-0021_ref_015 article-title: “An algorithm for computing a sequence of Richelot isogenies,” publication-title: Bull. Korean Math. Soc – volume: 17 start-page: 418 issue: suppl. A year: 2014 end-page: 432 ident: j_jmc-2019-0021_ref_033 article-title: “On the quaternion $ℓ$-isogeny path problem,” publication-title: LMS J. Comput. Math. – volume: 410 start-page: 5285 issue: 50 year: 2009 end-page: 5297 ident: j_jmc-2019-0021_ref_030 article-title: “Claw finding algorithms using quantum walk,” publication-title: Theoretical Computer Science – year: 2020 ident: j_jmc-2019-0021_ref_035 article-title: “Isogeny graphs of superspecial abelian varieties and generalized Brandt matrices,” publication-title: arXiv preprint arXiv:2005.09031 – volume: 57 start-page: 127 issue: 2 year: 1986 end-page: 152 ident: j_jmc-2019-0021_ref_021 article-title: “Supersingular curves of genus two and class numbers,” publication-title: Compositio Mathematica – volume: 56 start-page: 381 year: 1996 ident: ref181 article-title: “Constructing distinct curves with isomorphic Jacobians,” publication-title: J. Number Theory doi: 10.1006/jnth.1996.0026 – volume: 46 start-page: 789 year: 2009 ident: ref141 article-title: “An algorithm for computing a sequence of Richelot isogenies,” publication-title: Bull. Korean Math. Soc doi: 10.4134/BKMS.2009.46.4.789 – volume: 12 start-page: 315 year: 2000 ident: ref581 article-title: “Large torsion subgroups of split jacobians of curves of genus two or three,” publication-title: Forum Mathematicum – volume: 22 start-page: 93 year: 2009 ident: ref21 article-title: “Cryptographic hash functions from expander graphs,” publication-title: Journal of Cryptology doi: 10.1007/s00145-007-9002-x – start-page: 271 volume-title: Post-Quantum Cryptography year: 2019 ident: ref431 – volume: 485 start-page: 93 year: 1997 ident: ref591 article-title: “The number of curves of genus two with elliptic differentials,” publication-title: Journal für die reine und angewandte Mathematik – year: 2020 ident: ref271 article-title: “Counting superspecial Richelot isogenies and its cryptographic application.” publication-title: Cornell University arXiv, Report 2003.00633 – start-page: 71 volume-title: Computational aspects of algebraic curves year: 2005 ident: ref211 doi: 10.1142/9789812701640_0006 – volume: 106 volume-title: The arithmetic of elliptic curves year: 2009 ident: ref611 – year: 2006 ident: ref01 article-title: “Hard homogeneous spaces.” publication-title: Cryptology ePrint Archive, Report 2006/291 – year: 2017 ident: ref461 publication-title: “Supersingular isogeny key encapsulation.” – volume-title: PQCrypto 2020 year: 2020 ident: ref631 – start-page: 759 volume-title: Advances in Cryptology – EUROCRYPT 2019 year: 2019 ident: ref421 – start-page: 395 volume-title: Advances in Cryptology – ASIACRYPT 2018, Part III year: 2018 ident: ref61 – start-page: 365 volume-title: Advances in Cryptology – ASIACRYPT 2018, Part III year: 2018 ident: ref401 – start-page: 19 volume-title: International Workshop on Post-Quantum Cryptography year: 2011 ident: ref31 – start-page: 227 volume-title: Advances in Cryptology – ASIACRYPT 2019 year: 2019 ident: ref441 – volume: 91 start-page: 37 year: 1994 ident: ref191 article-title: “On the field of definition of superspecial polarized abelian varieties and type numbers,” publication-title: Compositio Mathematica – volume: 47 start-page: 53 year: 2009 ident: ref121 article-title: “Families of Ramanujan graphs and quaternion algebras,” publication-title: Groups and symmetries: from Neolithic Scots to John McKay doi: 10.1090/crmp/047/05 – volume-title: PhD thesis year: 2005 ident: ref221 – volume: 29 start-page: 97 volume-title: Mathematical Modelling for Next-Generation Cryptography. Mathematics for Industry year: 2018 ident: ref131 – volume-title: PhD thesis year: 1994 ident: ref521 – year: 2017 ident: ref111 publication-title: “Supersingular isogeny key encapsulation.” – volume: 57 start-page: 127 year: 1986 ident: ref201 article-title: “Supersingular curves of genus two and class numbers,” publication-title: Compositio Mathematica – year: 2020 ident: ref341 article-title: “Isogeny graphs of superspecial abelian varieties and generalized Brandt matrices,” publication-title: arXiv preprint arXiv:2005.09031 – volume: 91 start-page: 37 year: 1994 ident: ref541 article-title: “On the field of definition of superspecial polarized abelian varieties and type numbers,” publication-title: Compositio Mathematica – volume: 56 start-page: 381 year: 1996 ident: ref531 article-title: “Constructing distinct curves with isomorphic Jacobians,” publication-title: J. Number Theory doi: 10.1006/jnth.1996.0026 – start-page: 365 volume-title: Advances in Cryptology – ASIACRYPT 2018, Part III year: 2018 ident: ref51 – year: 2020 ident: ref691 article-title: “Isogeny graphs of superspecial abelian varieties and generalized Brandt matrices,” publication-title: arXiv preprint arXiv:2005.09031 – volume: 485 start-page: 93 year: 1997 ident: ref241 article-title: “The number of curves of genus two with elliptic differentials,” publication-title: Journal für die reine und angewandte Mathematik – volume-title: Master’s thesis year: 2004 ident: ref11 – start-page: 271 volume-title: Post-Quantum Cryptography year: 2019 ident: ref81 – start-page: 248 volume-title: Advances in Cryptology – ASIACRYPT 2019 year: 2019 ident: ref101 – volume: 8 start-page: 209 year: 2014 ident: ref391 article-title: “Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies,” publication-title: Journal of Mathematical Cryptology doi: 10.1515/jmc-2012-0015 – start-page: 286 volume-title: Post-Quantum Cryptography year: 2019 ident: ref151 – volume-title: Moduli of supersingular abelian varieties, 1680 of Lecture Notes in Mathematics year: 1998 ident: ref161 – volume: 12 start-page: 315 year: 2000 ident: ref231 article-title: “Large torsion subgroups of split jacobians of curves of genus two or three,” publication-title: Forum Mathematicum – volume-title: Master’s thesis year: 2004 ident: ref361 – volume-title: Moduli of supersingular abelian varieties, 1680 of Lecture Notes in Mathematics year: 1998 ident: ref511 – volume: 29 start-page: 97 volume-title: Mathematical Modelling for Next-Generation Cryptography. Mathematics for Industry year: 2018 ident: ref481 – volume: 410 start-page: 5285 year: 2009 ident: ref291 article-title: “Claw finding algorithms using quantum walk,” publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2009.08.030 – volume: 63 start-page: 992 year: 2011 ident: ref251 article-title: “The arithmetic of genus two curves with (4, 4)-split Jacobians,” publication-title: Canadian Journal of Mathematics doi: 10.4153/CJM-2011-039-3 – volume: 106 volume-title: The arithmetic of elliptic curves year: 2009 ident: ref261 – volume: 22 start-page: 93 year: 2009 ident: ref371 article-title: “Cryptographic hash functions from expander graphs,” publication-title: Journal of Cryptology doi: 10.1007/s00145-007-9002-x – volume: 8 start-page: 209 year: 2014 ident: ref41 article-title: “Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies,” publication-title: Journal of Mathematical Cryptology doi: 10.1515/jmc-2012-0015 – volume-title: PhD thesis year: 2005 ident: ref571 – year: 2017 ident: ref661 article-title: “Faster cryptographic hash function from supersingular isogeny graphs.” publication-title: Cryptology ePrint Archive, Report 2017/1202 – start-page: 248 volume-title: Advances in Cryptology – ASIACRYPT 2019 year: 2019 ident: ref451 – volume: 410 start-page: 5285 year: 2009 ident: ref641 article-title: “Claw finding algorithms using quantum walk,” publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2009.08.030 – volume: 17 start-page: 418 year: 2014 ident: ref321 article-title: “On the quaternion $ℓ$-isogeny path problem,” publication-title: LMS J. Comput. Math. doi: 10.1112/S1461157014000151 – start-page: 32 volume-title: Advances in Cryptology – CRYPTO 2019 year: 2019 ident: ref651 – volume: 17 start-page: 418 year: 2014 ident: ref671 article-title: “On the quaternion $ℓ$-isogeny path problem,” publication-title: LMS J. Comput. Math. doi: 10.1112/S1461157014000151 – volume: 47 start-page: 53 year: 2009 ident: ref471 article-title: “Families of Ramanujan graphs and quaternion algebras,” publication-title: Groups and symmetries: from Neolithic Scots to John McKay doi: 10.1090/crmp/047/05 – start-page: 759 volume-title: Advances in Cryptology – EUROCRYPT 2019 year: 2019 ident: ref71 – start-page: 227 volume-title: Advances in Cryptology – ASIACRYPT 2019 year: 2019 ident: ref91 – start-page: 286 volume-title: Post-Quantum Cryptography year: 2019 ident: ref501 – year: 2017 ident: ref311 article-title: “Faster cryptographic hash function from supersingular isogeny graphs.” publication-title: Cryptology ePrint Archive, Report 2017/1202 – start-page: 329 volume-title: Advances in cryptology—EUROCRYPT 2018. Part III year: 2018 ident: ref331 – start-page: 329 volume-title: Advances in cryptology—EUROCRYPT 2018. Part III year: 2018 ident: ref681 – volume: 63 start-page: 992 year: 2011 ident: ref601 article-title: “The arithmetic of genus two curves with (4, 4)-split Jacobians,” publication-title: Canadian Journal of Mathematics doi: 10.4153/CJM-2011-039-3 – volume-title: PQCrypto 2020 year: 2020 ident: ref281 – volume: 46 start-page: 789 year: 2009 ident: ref491 article-title: “An algorithm for computing a sequence of Richelot isogenies,” publication-title: Bull. Korean Math. Soc doi: 10.4134/BKMS.2009.46.4.789 – year: 2020 ident: ref621 article-title: “Counting superspecial Richelot isogenies and its cryptographic application.” publication-title: Cornell University arXiv, Report 2003.00633 – volume: 57 start-page: 127 year: 1986 ident: ref551 article-title: “Supersingular curves of genus two and class numbers,” publication-title: Compositio Mathematica – start-page: 32 volume-title: Advances in Cryptology – CRYPTO 2019 year: 2019 ident: ref301 – start-page: 19 volume-title: International Workshop on Post-Quantum Cryptography year: 2011 ident: ref381 – start-page: 71 volume-title: Computational aspects of algebraic curves year: 2005 ident: ref561 doi: 10.1142/9789812701640_0006 – volume-title: PhD thesis year: 1994 ident: ref171 – year: 2006 ident: ref351 article-title: “Hard homogeneous spaces.” publication-title: Cryptology ePrint Archive, Report 2006/291 – start-page: 395 volume-title: Advances in Cryptology – ASIACRYPT 2018, Part III year: 2018 ident: ref411 |
SSID | ssj0067881 |
Score | 2.3114245 |
Snippet | In 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all... Last year Takashima proposed a version of Charles, Goren and Lauter's hash function using Richelot isogenies, starting from a genus-2 curve that allows for all... |
SourceID | doaj hal proquest crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 268 |
SubjectTerms | 14G50 14K02 94A60 Computer Science Cryptography Cryptography and Security Curves Fields (mathematics) Graph theory Isogeny Mathematics Number Theory |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcoFDxVMESmVViBOBxLFj54BQi6gi1OWAWKk3y69sW7W7JY9C_z0z3uyW0nLjmGhiWTPjzHzyzDeEvIao06jS27QQGbbkVD5VyvhUVqE0tvKZsdjvPPla1lP-5UgcXVMKjQrs7oR2OE9q2p69-_Xj6iMc-A9xek8u3p-eOzA2NuNk2FJ-D4KSxCkOE76-UCiRNR2xFyTwKYMQPNJt3vr8RniKLP4QdI6xRvKPBHTrZ7zK9mHWDlf96uo0RqSDh2RrTCXp3tL2j8hGmD8mDyZrHtbuCalr0x1TjF3RvSg2k9BuuFh2WILrUfCfoUsZdUN7GTqKZfAz-i3Why56etItQADA9FMyPfj8_VOdjrMTUgcZVZ8qb5wq4H8XSieUZdxUlgvpbGWU8IY3QnowkmHeec55wDwnlLxRMhTBVbJ4Rjbni3l4Tqh0kGQwWA7OOs-tNdY6JpzMfMMaSHcS8nalMu1GYnGcb3GmEWCAhjVoWKOGNWo4IW_W4hdLRo1_Ce6j_tdCSIQdXyzamR7PlQ4eACTs3osscFcxo3jhhA0MnvLKZQnZBevdWKPeO9T4LmPRLcQlS8j2yrh65YGa8YIDXgM4lxD-l8Gvpe7cec5zVqoX_2P_L8l9hggfi1TkNtns2yG8gjSotzvRwX8DsPIEWg priority: 102 providerName: Scholars Portal |
Title | Hash functions from superspecial genus-2 curves using Richelot isogenies |
URI | https://www.degruyter.com/doi/10.1515/jmc-2019-0021 https://www.proquest.com/docview/2434217753 https://inria.hal.science/hal-02067885 https://doaj.org/article/ed924e12d50e4c92a843c5be2e4c19c0 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvSAWmjV8JKFUE-NSBw7cY6AWEUVywF1JW6WX4FWsLvaJFT8e2ac7AIViEsvkWKNLGvms2c-eWZMyCF4nVrmzsSZSLAkp3SxlNrFRelzbUqXaIP1zuOLvJrwn1fi6tlTX5gT1rcH7hV35B0wBJ8yJxLPbcm05JkVxjP4S0sb2Dr4vCWZ6s_gHJukI9WCeD1m4HGH7prgvI_-3FmABpbuJCx94Y1C037wMTeYEvks3tz4G26unb9edA_t8qY0OKDRJ7IxRI70uF_xZ_LBTzfJx_Gq7WqzRapKNzcUXVVAE8XaEdp0876gEpBGAS5dEzNqu8W9byhmvV_Ty5AOOmvp72YGAsCdv5DJ6OzXaRUPTyXEFgKoNpZOW5nB8eZzK6RhXJeGi8KaUkvhNK9F4cAmmjnrOEd9itTnvJaFz7wti-wrWZvOpv4boYWFmILBdLC1eWqMNsYyYYvE1ayG6CYiP5YqU3boI47PWdwq5BOgYQUaVqhhhRqOyPeV-LxvoPGW4AnqfyWEfa_DAKBBDWhQ76EhIgdgvRdzVMfnCscSFmAh7llEdpfGVcOObRTjGQd6BuwtIvwfgz9JvbrylKcsl9v_Y_07ZJ0hoceclGKXrLWLzu9B1NOa_QBw-I65fAS1JP5b |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BewAOFU81UMBCiBPRZh07cY4LogTYLRK0EjfLr-yC2k21SYr498xks0vL48Ix1jiyZsaeb5KZzwDPMepUKvM2TmVCLTmFj5UyPs6LkBlb-MRY6neeHWXliXj_RW6qCZuhrNKH-ar70a4ZUke-dh19KNtyDWAEHn07c2hf6r_BGDVatGen12E3Q_CP-dfupHz7-ePmOM6IL30g1_xj5pVg1HP2Y4hZUEXkJbi5973_cb1d1aX4c3gb9gbgyCZrS9-Ba2F5F27NtqyrzT0oS9MsGEWq3pkYtY6wpjtf91OiozH0lq6JOXPd6iI0jIre5-xTXw1at-xrU6MAps734eTwzfHrMh5uSogd4qc2Vt44leLpFjInleXCFFbI3NnCKOmNqGTu0SSGe-eFEIFQTchEpfKQBlfk6QPYWdbLsA8sdwgpOL4Od7YYW2usdVy6PPEVrxDcRPByozLtBhpxus3iVFM6gRrWqGFNGtak4QhebMXP1_wZ_xJ8RfrfChHtdT9Qr-Z62EU6eEwXcfVeJkG4ghslUidt4Pg0LlwSwTO03pV3lJOpprGE964gL3gEBxvj6mHDNpqLVGB2hslbBOI3g_-S-uvKx2LMM_Xw_6Y9hRvl8Wyqp--OPjyCm5yyeSpIyQ9gp1114TFCntY-GZz6Jx-5_cs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzVlAIWQpyINuvYjnNcHkuAtiCgUm-WX9mC6Ga1SYr498xks2HL48Ix1jiyZsae-ZKZz4Q8gahTKultnIoEW3JyHytlfJzlQRqb-8RY7Hc-OpbFCX97Kk63uvixrNKH-ar90awZUse-ci1-KBu4BiACj7-eO7Av9t9AjBovfXmV7EgJ4HxEdqbF60_vN6exRLr0nlvzj4mXYlFH2Q8R5gwLIreyzd3v3X_rYVFb4Wd2k-z2eSOdrg19i1wJi9vkxtFAulrfIUVh6jOKgarzJYqdI7Rul-t2SvAzCs7S1jGjrl1dhJpizfucfuyKQauGfqkrEADkfJeczF59flHE_UUJsYP0qYmVN06lcLgF6YSyjJvccpE5mxslvOGlyDxYxDDvPOc8YFITJC9VFtLg8iy9R0aLahH2CM0cZBQMXgcbm0-sNdY6JlyW-JKVkNtE5NlGZdr1LOJ4mcU3jWgCNKxBwxo1rFHDEXk6iC_X9Bn_EnyO-h-EkPW6G6hWc91vIh08oEVYvRdJ4C5nRvHUCRsYPE1yl0TkMVjv0juK6aHGsYR1riAuWEQONsbV_X6tNeMpB3AG2C0i_DeD_5L668onfMKk2v-_aY_ItQ8vZ_rwzfG7--Q6QyyP5SjZARk1qzY8gISnsQ97n_4JjVr88Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hash+functions+from+superspecial+genus-2+curves+using+Richelot+isogenies&rft.jtitle=Journal+of+mathematical+cryptology&rft.au=Castryck+Wouter&rft.au=Decru+Thomas&rft.au=Smith+Benjamin&rft.date=2020-08-07&rft.pub=De+Gruyter&rft.issn=1862-2976&rft.eissn=1862-2984&rft.volume=14&rft.issue=1&rft.spage=268&rft.epage=292&rft_id=info:doi/10.1515%2Fjmc-2019-0021&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ed924e12d50e4c92a843c5be2e4c19c0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-2976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-2976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-2976&client=summon |