Triterpenoids-templated self-assembly nanosystem for biomimetic delivery of CRISPR/Cas9 based on the synergy of TLR-2 and ICB to enhance HCC immunotherapy
Combination immunotherapy has shown promising potential for enhancing the objective response rate compared to immune checkpoint blockade (ICB) monotherapy. However, combination therapy with multi-drugs is limited by the different properties of the agents and inconsistent synergistic targeted deliver...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 14; no. 7; pp. 3205 - 3217 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Combination immunotherapy has shown promising potential for enhancing the objective response rate compared to immune checkpoint blockade (ICB) monotherapy. However, combination therapy with multi-drugs is limited by the different properties of the agents and inconsistent synergistic targeted delivery. Herein, based on a universal triterpene template and the anticancer active agent ursolic acid (UA), a cytomembrane-coated biomimetic delivery nanoplatform (UR@M) prepared by the self-assembly of a PD-L1 targeted CRISPR/Cas9 system and UA was designed for hepatocellular carcinoma (HCC) treatment. UR@M showed enhanced tumor accumulation in vivo with homologous tumor targeting, and CRISPR in the nanosystem exhibited potent gene-editing efficiency of 76.53% in vitro and 62.42% in vivo with no off-target effects. UA activated the natural immune system through the TLR-2-MyD88-TRAF6 pathway, which synergistically enhanced the proliferation of natural killer cells and dendritic cells and realized excellent immune cytotoxic T cell infiltration by combining with the ICB of PD-L1. The strategy of work along both lines based on innate immune and adaptive immunity displayed a significant effect in tumor regression. Overall, the UA-templated strategy “killed three birds with one stone” by establishing a self-assembly nanosystem, inducing tumor cell death, and promoting synergistic immunostimulation for HCC treatment.
A biomimetic nanodrug UR@M from the triterpenoids-templated self-assembly is developed to deliver CRISPR/Cas9, exhibiting synergistic immunotherapy by activating innate immune by TLR-2 pathway and gene therapy of PD-L1 by CRISPR/Cas9. [Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors made equal contributions to this work. |
ISSN: | 2211-3835 2211-3843 |
DOI: | 10.1016/j.apsb.2024.04.033 |