New alternately colored FRET sensors for simultaneous monitoring of Zn²⁺ in multiple cellular locations

Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) are powerful tools for reporting on ions, molecules and biochemical reactions in living cells. Here we describe the development of new sensors for Zn²⁺based on alternate FRET-pairs that do not involve the traditional...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 11; p. e49371
Main Authors Miranda, Jose G, Weaver, Amanda L, Qin, Yan, Park, J Genevieve, Stoddard, Caitlin I, Lin, Michael Z, Palmer, Amy E
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.11.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) are powerful tools for reporting on ions, molecules and biochemical reactions in living cells. Here we describe the development of new sensors for Zn²⁺based on alternate FRET-pairs that do not involve the traditional CFP and YFP. Zn²⁺ is an essential micronutrient and plays fundamental roles in cell biology. Consequently there is a pressing need for robust sensors to monitor Zn²⁺ levels and dynamics in cells with high spatial and temporal resolution. Here we develop a suite of sensors using alternate FRET pairs, including tSapphire/TagRFP, tSapphire/mKO, Clover/mRuby2, mOrange2/mCherry, and mOrange2/mKATE. These sensors were targeted to both the nucleus and cytosol and characterized and validated in living cells. Sensors based on the new FRET pair Clover/mRuby2 displayed a higher dynamic range and better signal-to-noise ratio than the remaining sensors tested and were optimal for monitoring changes in cytosolic and nuclear Zn²⁺. Using a green-red sensor targeted to the nucleus and cyan-yellow sensor targeted to either the ER, Golgi, or mitochondria, we were able to monitor Zn²⁺ uptake simultaneously in two compartments, revealing that nuclear Zn²⁺ rises quickly, whereas the ER, Golgi, and mitochondria all sequester Zn²⁺ more slowly and with a delay of 600-700 sec. Lastly, these studies provide the first glimpse of nuclear Zn²⁺ and reveal that nuclear Zn²⁺ is buffered at a higher level than cytosolic Zn²⁺.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: JGM YQ JGP AEP. Performed the experiments: JGM ALW YQ JGP CIS. Analyzed the data: JGM AEP. Contributed reagents/materials/analysis tools: MZL. Wrote the paper: JGM AEP. Critical feedback on results: MZL.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0049371