Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications

High purity semiconducting single‐walled carbon nanotubes (s‐SWCNTs) with a narrow diameter distribution are required for high‐performance transistors. Achieving this goal is extremely challenging because the as‐grown material contains mixtures of s‐SWCNTs and metallic‐ (m‐) SWCNTs with wide diamete...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 27; no. 48; pp. 7908 - 7937
Main Authors Islam, Ahmad E., Rogers, John A., Alam, Muhammad A.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 22.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High purity semiconducting single‐walled carbon nanotubes (s‐SWCNTs) with a narrow diameter distribution are required for high‐performance transistors. Achieving this goal is extremely challenging because the as‐grown material contains mixtures of s‐SWCNTs and metallic‐ (m‐) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s‐SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s‐SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s‐SWCNTs in as‐grown and post‐processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field‐effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements. Advances in realizing high‐purity semiconducting single‐walled carbon nanotubes via in situ and ex situ approaches are reviewed. The utility of these techniques are compared with an emphasis on materials growth approaches and operational properties of transistors to assess the quality and purity of the resulting collections of nanotubes.
AbstractList High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements.
High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements. Advances in realizing high-purity semiconducting single-walled carbon nanotubes via in situ and ex situ approaches are reviewed. The utility of these techniques are compared with an emphasis on materials growth approaches and operational properties of transistors to assess the quality and purity of the resulting collections of nanotubes.
High purity semiconducting single‐walled carbon nanotubes (s‐SWCNTs) with a narrow diameter distribution are required for high‐performance transistors. Achieving this goal is extremely challenging because the as‐grown material contains mixtures of s‐SWCNTs and metallic‐ (m‐) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s‐SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s‐SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s‐SWCNTs in as‐grown and post‐processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field‐effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements. Advances in realizing high‐purity semiconducting single‐walled carbon nanotubes via in situ and ex situ approaches are reviewed. The utility of these techniques are compared with an emphasis on materials growth approaches and operational properties of transistors to assess the quality and purity of the resulting collections of nanotubes.
Author Islam, Ahmad E.
Alam, Muhammad A.
Rogers, John A.
Author_xml – sequence: 1
  givenname: Ahmad E.
  surname: Islam
  fullname: Islam, Ahmad E.
  email: aeislam@ieee.org
  organization: Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, Dayton, OH, USA
– sequence: 2
  givenname: John A.
  surname: Rogers
  fullname: Rogers, John A.
  organization: Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois, IL, 61801, Urbana, USA
– sequence: 3
  givenname: Muhammad A.
  surname: Alam
  fullname: Alam, Muhammad A.
  organization: Department of Electrical and Computer Engineering, Purdue University West Lafayette, IN, 47907, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26540144$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFLUuUJZsM1x4_l6NAS6XSVlCY7izbcSpDYk_tRNB_35QpI3bd3Je-cxb3HKGDmKJH6C2GJQYgH0w7mCUBzIAoLF-gBWYE1xQUO0ALUCtWK07lIToq5ScAKA78FToknFHAlC5Q99U7H8fqKqfb7EupQqwu7WhCDPG2-uaH4FJsJzf-XefS-3pj-t63VWOyTbG6MDGNk_Wl6lKurrOJJZRxHtfbbR-cGUOK5TV62Zm--DdP_Rh9P_l03Xyuzy9Pz5r1ee0YIbJWSoFVXPGWWOuIZ04Yy_B8toZRJkmnQFggklNiBFeYOw-SOWNbIrAzq2P0fue7zelu8mXUQyjO972JPk1FYwlABcdUPY8KDlJgSdiMLneoy6mU7Du9zWEw-V5j0I8x6McY9D6GWfDuyXuyg2_3-L-_z4DaAb9D7--fsdPrj1_W_5vXO-38Zv9nrzX5l-ZiJZjeXJzqBm9urm6aE_1j9QCCZaVK
CitedBy_id crossref_primary_10_1002_aelm_202300196
crossref_primary_10_1002_adma_201603565
crossref_primary_10_3390_nano13030590
crossref_primary_10_1038_s41928_019_0330_2
crossref_primary_10_1039_C7NR03302H
crossref_primary_10_1016_j_chip_2023_100064
crossref_primary_10_1557_adv_2016_3
crossref_primary_10_1002_adom_201600361
crossref_primary_10_3390_nano13030559
crossref_primary_10_1002_adma_201806480
crossref_primary_10_1021_acs_jpcc_8b08235
crossref_primary_10_1021_acs_langmuir_6b02475
crossref_primary_10_1021_acsanm_9b02196
crossref_primary_10_1039_C7CS00104E
crossref_primary_10_1002_adma_201603895
crossref_primary_10_1002_admi_202201707
crossref_primary_10_1002_aenm_201600522
crossref_primary_10_1021_acs_jpcc_5b11346
crossref_primary_10_1002_smll_202000923
crossref_primary_10_1016_j_carbon_2016_07_035
crossref_primary_10_1021_acs_accounts_7b00234
crossref_primary_10_1126_science_aan2476
crossref_primary_10_1021_acs_jpcc_7b06653
crossref_primary_10_34077_Semicond2019_376
crossref_primary_10_1016_j_carbon_2022_04_020
crossref_primary_10_34077_Semicond2019_375
crossref_primary_10_1002_pssb_201600659
crossref_primary_10_1002_smtd_202301596
crossref_primary_10_1016_j_carbon_2018_04_047
crossref_primary_10_1002_aelm_202100202
crossref_primary_10_1002_chin_201609268
crossref_primary_10_1002_adfm_201907150
crossref_primary_10_1002_macp_202100196
crossref_primary_10_1021_acs_energyfuels_2c03434
crossref_primary_10_1002_adma_201606852
crossref_primary_10_1038_s41598_019_46944_9
crossref_primary_10_1039_D0RA08591J
crossref_primary_10_1002_smtd_201800189
crossref_primary_10_1016_j_cplett_2016_07_049
crossref_primary_10_1093_humupd_dmw020
crossref_primary_10_1002_jsde_12702
crossref_primary_10_1063_5_0065730
crossref_primary_10_1088_1361_6641_aa89ce
crossref_primary_10_1021_acsnano_3c06449
crossref_primary_10_1002_adfm_201703938
crossref_primary_10_1134_S1070427219090106
crossref_primary_10_1002_advs_201801653
crossref_primary_10_1002_adfm_201902273
crossref_primary_10_1002_adma_201602736
crossref_primary_10_1016_j_carbon_2021_08_032
crossref_primary_10_1002_adfm_201702341
crossref_primary_10_1016_j_cap_2017_01_024
crossref_primary_10_1016_j_mser_2016_08_002
crossref_primary_10_1039_D3NJ04345B
crossref_primary_10_1021_acsnano_8b06511
crossref_primary_10_1021_acssensors_0c00764
crossref_primary_10_1002_aelm_201600229
crossref_primary_10_1002_pssb_201700139
crossref_primary_10_1021_acsami_9b21142
crossref_primary_10_1007_s41061_017_0116_9
crossref_primary_10_1016_j_carbon_2023_118094
crossref_primary_10_1016_j_carbon_2022_12_025
crossref_primary_10_3390_s23208469
Cites_doi 10.1109/JSSC.2013.2282092
10.1038/nnano.2011.1
10.1002/anie.200460356
10.1016/j.cplett.2003.10.080
10.1021/nn200198b
10.1023/A:1016064212984
10.1126/science.1201938
10.1063/1.4902915
10.1039/C5CC00167F
10.1126/science.1058782
10.1016/S0009-2614(99)01029-5
10.1021/nn503347a
10.1557/jmr.2013.322
10.1021/jp710691j
10.1021/nn1025675
10.1063/1.2108127
10.1088/0957-4484/16/6/003
10.1109/TED.2014.2360869
10.1038/nature13434
10.1039/c1jm10399g
10.1016/j.carbon.2014.09.063
10.1021/jp906893m
10.1038/nature07110
10.1063/1.2364461
10.1126/science.1096524
10.1016/j.jpowsour.2004.06.014
10.1016/j.physe.2007.11.034
10.1002/smll.200500120
10.1038/ncomms1545
10.1088/1367-2630/5/1/139
10.1021/nl8034866
10.1007/s003390201278
10.1063/1.2715031
10.1021/nn400053k
10.1038/nnano.2010.220
10.1109/TCAD.2011.2121010
10.1021/nl061534m
10.1038/31579
10.1021/ja109018h
10.1039/c3nr33560g
10.1166/jnn.2010.2939
10.1016/j.mattod.2014.07.008
10.1021/nn304794w
10.1557/mrs2010.554
10.1016/S0008-6223(00)00058-0
10.1002/9781118958254.ch16
10.1021/nl202695v
10.1103/PhysRevLett.101.256804
10.1021/nn302185d
10.1021/ja8035724
10.1007/978-0-387-74363-9
10.1007/978-3-540-72865-8
10.1021/ja9068529
10.1021/nl802661z
10.1021/nn203516z
10.1246/cl.141193
10.1002/elan.200403113
10.1039/B920457C
10.1557/mrs2006.119
10.1103/PhysRevLett.95.146805
10.1016/S0167-9317(02)00814-6
10.1088/0957-4484/24/40/405204
10.1021/ja312282g
10.1021/nl0259232
10.1063/1.4916537
10.1126/science.1072631
10.1038/nnano.2009.355
10.1021/ja028599l
10.1002/adma.200803551
10.1145/1283780.1283783
10.1002/adfm.201300124
10.1143/APEX.1.114001
10.1038/ncomms6041
10.1016/j.carbon.2012.06.049
10.1016/S0379-6779(98)00278-1
10.1021/ja0553203
10.1016/j.physe.2007.09.185
10.1038/nmat877
10.1021/ja058214
10.1063/1.4866577
10.1557/mrs2006.118
10.1088/0022-3727/41/6/065304
10.1039/b904116h
10.1021/nl203041n
10.1038/nnano.2010.116
10.1021/nn3026172
10.1039/C2CS35325C
10.1021/ja065767r
10.1063/1.2209887
10.1021/ja106609y
10.1021/nl9014342
10.1103/PhysRevLett.90.217401
10.1021/nl034937k
10.1002/smll.201400696
10.1126/science.1213003
10.1126/science.1087691
10.1007/s12274-009-9013-z
10.1063/1.1605793
10.1007/s00339-005-3256-7
10.1021/cm000787s
10.1063/1.3402971
10.1021/nl0256457
10.1021/nl060068y
10.1038/ncomms1313
10.1038/ncomms2205
10.1007/s00216-005-3400-4
10.1017/CBO9781139164313
10.1126/science.1133781
10.1021/nn406301r
10.1038/nature01797
10.1126/science.1222453
10.1002/smll.201202434
10.1038/nnano.2006.192
10.1038/srep01460
10.1103/PhysRevB.82.205406
10.1038/nnano.2008.135
10.1109/TNANO.2009.2016562
10.1063/1.2431465
10.1021/nl052145f
10.1016/0038-1098(92)90911-R
10.1126/science.1086534
10.1021/nl203117h
10.1021/nl902522f
10.1021/ja046482m
10.1021/ja036622c
10.1021/nl0493794
10.1143/APEX.2.071601
10.1021/ja070808k
10.1103/PhysRevLett.84.2941
10.1109/LED.2008.2001259
10.1038/nnano.2006.52
10.1021/nn405105y
10.1039/c2jm33732k
10.1021/ja042544x
10.1002/adfm.201102814
10.1063/1.2211310
10.1021/nl101513z
10.1021/nl402259k
10.1038/nmat3231
10.1109/TED.2007.901882
10.1073/pnas.0709734105
10.1063/1.2717855
10.1021/nn204875a
10.1246/cl.2011.239
10.1126/science.270.5239.1179
10.1007/s12274
10.1021/nn1019384
10.1063/1.3692048
10.1126/science.287.5459.1801
10.1038/ncomms6071
10.1007/3-540-39947-X_1
10.1021/jz9004762
10.1021/nl501417h
10.1038/nphoton.2008.94
10.1021/nn901599g
10.1109/JPROC.2013.2257633
10.1002/adfm.200500937
10.1109/TED.2008.922855
10.1038/nnano.2010.89
10.1021/nl050254o
10.1126/science.1168049
10.1109/TED.2007.903291
10.1038/nature12502
10.1021/nl801876h
10.1039/b9nr00427k
10.1021/nl803081j
10.1126/science.1228061
10.1088/0022-3727/31/8/002
10.1021/nl060305x
10.1023/A:1020174126542
10.1021/nl803496s
10.1021/nn403935v
10.1088/0957-4484/19/29/295202
10.1021/nl080814u
10.1021/ar400314b
10.1016/S0009-2614(02)00838-2
10.1126/science.273.5274.483
10.1021/jp071387w
10.1021/nl0508624
10.1063/1.3600664
10.1126/science.1148841
10.1002/adma.200501740
10.1021/ja2008278
10.1063/1.109315
10.1021/nn201314t
10.1021/nl035185x
10.1016/S0009-2614(99)01379-2
10.1021/nl9001074
10.1021/jp056095e
10.1038/nature08116
10.1063/1.4864487
10.1038/ncomms6332
10.1007/s12274-011-0152-7
10.1021/jp990882s
10.1021/nn401998r
10.1021/nl403515c
10.1021/nl025602q
10.1021/nl035097c
10.1038/nnano.2013.56
10.1007/s12274-009-9057-0
10.1063/1.3327521
10.1021/nn505566r
10.1021/ar500141j
10.1007/s12274-011-0133-x
10.1021/nn302720n
10.1002/adma.200903238
10.1109/7361.983465
10.1073/pnas.1320045111
10.1021/nl203701g
10.1038/363603a0
10.1021/nl034010k
10.1021/nl800967n
10.1103/PhysRevB.72.165423
10.1021/nn4000435
10.1073/pnas.0811946106
10.1038/nnano.2012.39
10.1038/nnano.2007.300
10.1021/jp012085b
10.1038/nnano.2012.257
10.1038/nnano.2007.77
10.1016/j.cplett.2005.04.054
10.1021/nl034841q
10.1021/nn800723u
10.1021/ja2096317
10.3390/ma3073818
10.1021/nl0612289
10.1002/adma.200801995
10.1021/nl803835z
10.1002/adfm.201303865
10.1021/ja3038992
10.1126/science.1091911
10.1088/0957-4484/20/49/495202
10.1002/smll.201101594
10.1021/nn503627h
10.1021/nn203771u
10.1557/JMR.2010.0264
10.1126/science.1156588
10.1002/cssc.201100177
10.1063/1.3204971
10.1021/nl400544q
10.1073/pnas.1318851111
10.1109/JPROC.2007.911051
10.1039/c2cc16491d
10.1016/S0009-2614(02)00283-X
10.1149/1.1491235
10.1021/nl802756u
10.1021/nn901700u
10.1063/1.1865343
10.1021/ja102011h
10.1007/s12274-012-0219-0
10.1002/anie.201000659
10.1038/498443a
10.1021/nl2043375
10.1021/ja106937y
10.1063/1.1807523
10.1016/j.physrep.2004.10.006
10.1021/nn200919v
10.1002/adma.200900550
10.1021/nl9025488
10.1021/ja034475c
10.1016/j.synthmet.2007.06.012
10.1038/354056a0
10.1021/jp072887s
10.1109/LED.2004.841440
10.1021/nl0730965
10.1063/1.3467971
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
NPM
AAYXX
CITATION
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201502918
DatabaseName Istex
PubMed
CrossRef
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList PubMed
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 7937
ExternalDocumentID 10_1002_adma_201502918
26540144
ADMA201502918
ark_67375_WNG_C1WXPXCF_V
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Council and Air Force Office of Scientific Research
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
NPM
AAYXX
CITATION
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c5228-9990b9696d2bbc2e5c7ab51999ba54582f907b028642a76916ce085cabd271ca3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Sat Aug 17 01:21:09 EDT 2024
Thu Aug 15 22:45:34 EDT 2024
Thu Sep 26 15:56:43 EDT 2024
Sat Sep 28 08:01:31 EDT 2024
Sat Aug 24 00:53:57 EDT 2024
Wed Jan 17 05:00:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords on/off ratios, semiconducting purity
field-effect mobility
carbon nanotubes
transistor applications
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5228-9990b9696d2bbc2e5c7ab51999ba54582f907b028642a76916ce085cabd271ca3
Notes ark:/67375/WNG-C1WXPXCF-V
National Research Council and Air Force Office of Scientific Research
istex:11828C25725F79E3E0F69E96B5591A3F0F715E47
ArticleID:ADMA201502918
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201502918
PMID 26540144
PQID 1760871825
PQPubID 23479
PageCount 30
ParticipantIDs proquest_miscellaneous_1800476149
proquest_miscellaneous_1760871825
crossref_primary_10_1002_adma_201502918
pubmed_primary_26540144
wiley_primary_10_1002_adma_201502918_ADMA201502918
istex_primary_ark_67375_WNG_C1WXPXCF_V
PublicationCentury 2000
PublicationDate December 22, 2015
PublicationDateYYYYMMDD 2015-12-22
PublicationDate_xml – month: 12
  year: 2015
  text: December 22, 2015
  day: 22
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References S. H. Hur, M. H. Yoon, A. Gaur, M. Shim, A. Facchetti, T. J. Marks, J. A. Rogers, J. Am. Chem. Soc. 2005, 127, 13808.
R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, M. A. Alam, Adv. Funct. Mater. 2013, 23, 5150.
X. J. Zhou, J. Y. Park, S. M. Huang, J. Liu, P. L. McEuen, Phys. Rev. Lett. 2005, 95, 146805.
E. Mora, J. M. Pigos, F. Ding, B. I. Yakobson, A. R. Harutyunyan, J. Am. Chem. Soc. 2008, 130, 11840.
G. D. Nessim, Nanoscale 2010, 2, 1306.
W. S. Wong, A. Salleo, Flexible Electronics: Materials and Applications, Springer US, New York 2009.
M. M. Shulaker, J. Van Rethy, T. F. Wu, L. S. Liyanage, H. Wei, Z. Li, E. Pop, G. Gielen, H. S. P. Wong, S. Mitra, ACS Nano 2014, 8, 3434.
M. Picher, E. Anglaret, R. Arenal, V. Jourdain, Nano Lett. 2009, 9, 542.
S. K. Samanta, M. Fritsch, U. Scherf, W. Gomulya, S. Z. Bisri, M. A. Loi, Acc. Chem. Res. 2014, 47, 2446.
P. R. Nair, M. A. Alam, Appl. Phys. Lett. 2006, 88, 233120.
J. Zhang, C. Wang, C. Zhou, ACS Nano 2012, 6, 7412.
M. He, A. I. Chernov, P. V. Fedotov, E. D. Obraztsova, J. Sainio, E. Rikkinen, H. Jiang, Z. Zhu, Y. Tian, E. I. Kauppinen, M. Niemelae, A. O. I. Krauset, J. Am. Chem. Soc. 2010, 132, 13994.
M. C. Hersam, Nat. Nanotechnol. 2008, 3, 387.
S.-J. Choi, P. Bennett, D. Lee, J. Bokor, Nano Res. 2014, DOI:10.1007/s12274.
A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, H. J. Dai, Nano Lett. 2004, 4, 447.
Y. Miyata, K. Shiozawa, Y. Asada, Y. Ohno, R. Kitaura, T. Mizutani, H. Shinohara, Nano Res. 2011, 4, 963.
M. P. Gupta, A. Behnam, F. Lian, D. Estrada, E. Pop, S. Kumar, Nanotechnology 2013, 24, 405204.
F. Du, J. R. Felts, X. Xie, J. Song, Y. Li, M. R. Rosenberger, A. E. Islam, S. H. Jin, S. N. Dunham, C. Zhang, W. L. Wilson, Y. Huang, W. P. King, J. A. Rogers, ACS Nano 2014, 8, 12641.
H. Liu, D. Nishide, T. Tanaka, H. Kataura, Nat. Commun. 2011, 2, 309.
K. Liu, X. Hong, S. Choi, C. Jin, R. B. Capaz, J. Kim, W. Wang, X. Bai, S. G. Louie, E. Wang, F. Wang, Proc. Natl. Acad. Sci. USA 2014, 111, 7564.
A. Jorio, G. Dresselhaus, M. S. Dresselhaus, M. Terrones, A. G. S. Filho, A. M. Rao, in Carbon Nanotubes, Vol. 111, Springer-Verlag, Berlin/Heidelberg, Germany 2008, 531.
F. Schwierz, Nat. Nanotechnol. 2010, 5, 487.
M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater. 2003, 2, 338.
T. Labbaye, A. Canizares, M. Gaillard, T. Lecas, E. Kovacevic, C. Boulmer-Leborgne, T. Strunskus, N. Raimboux, P. Simon, G. Guimbretiere, M. R. Ammar, Appl. Phys. Lett. 2014, 105, 213109.
H. Li, W.-Y. Yin, K. Banerjee, J.-F. Mao, IEEE Trans. Electron Devices 2008, 55, 1328.
S. Park, H. W. Lee, H. Wang, S. Selvarasah, M. R. Dokmeci, Y. J. Park, S. N. Cha, J. M. Kim, Z. Bao, ACS Nano 2012, 6, 2487.
F. Toshimitsu, N. Nakashima, Nat. Commun. 2014, 5, 5041.
Z. Ren, Nat. Nanotechnol. 2007, 2, 17.
B. Yu, C. Liu, P.-X. Hou, Y. Tian, S. Li, B. Liu, F. Li, E. I. Kauppinen, H.-M. Cheng, J. Am. Chem. Soc. 2011, 133, 5232.
G. Hong, B. Zhang, B. Peng, J. Zhang, W. M. Choi, J.-Y. Choi, J. M. Kim, Z. Liu, J. Am. Chem. Soc. 2009, 131, 14642.
W. Kim, A. Javey, O. Vermesh, O. Wang, Y. M. Li, H. J. Dai, Nano Lett. 2003, 3, 193.
L. An, Q. A. Fu, C. G. Lu, J. Liu, J. Am. Chem. Soc. 2004, 126, 10520.
E. Pop, Nanotechnology 2008, 19, 295202.
K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, Y. H. Lee, J. Electrochem. Soc. 2002, 149, A1058.
A. D. Franklin, in Emerging Nanoelectronic Devices, (Eds: A. Chen, J. Hutchby, V. Zhirnov, G. Bourianoff), John Wiley & Sons Ltd, Chichester, UK 2014, p. 315.
T. Ragab, C. Basaran, J. Appl. Phys. 2009, 106, 063705.
E. Pop, D. Mann, Q. Wang, K. E. Goodson, H. J. Dai, Nano Lett. 2006, 6, 96.
K. H. Baloch, N. Voskanian, M. Bronsgeest, J. Cumings, Nat. Nanotechnol. 2012, 7, 315.
H. Park, J. J. Zhao, J. P. Lu, Nanotechnology 2005, 16, 635.
S. H. Jeong, K. K. Kim, S. J. Jeong, K. H. An, S. H. Lee, Y. H. Lee, Synth. Met. 2007, 157, 570.
A. Ismach, L. Segev, E. Wachtel, E. Joselevich, Angew. Chem. Int. Ed. 2004, 43, 6140.
P. Avouris, M. Freitag, V. Perebeinos, Nat. Photonics 2008, 2, 341.
W.-S. Li, P.-X. Hou, C. Liu, D.-M. Sun, J. Yuan, S.-Y. Zhao, L.-C. Yin, H. Cong, H.-M. Cheng, ACS Nano 2013, 7, 6831.
Z. H. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, P. Avouris, Nano Lett. 2005, 5, 1497.
T. Y. Astakhova, G. A. Vinogradov, O. D. Gurin, M. Menon, Russ. Chem. Bull. 2002, 51, 764.
D. K. Schroder, Semiconductor Material and Device Characterization, Wiley-IEEE Press, New Jersey 2006.
R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes, Science 2003, 301, 344.
J. Parker, C. Beasley, A. Lin, H.-Y. Chen, H. S. P. Wong, Carbon 2012, 50, 5093.
C. Kocabas, S. J. Kang, T. Ozel, M. Shim, J. A. Rogers, J. Phys. Chem. C 2007, 111, 17879.
Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, H. J. Dai, J. Phys. Chem. B 2001, 105, 11424.
B. K. Sarker, S. Shekhar, S. I. Khondaker, ACS Nano 2011, 5, 6297.
Y. Che, C. Wang, J. Liu, B. Liu, X. Lin, J. Parker, C. Beasley, H. S. P. Wong, C. Zhou, ACS Nano 2012, 6, 7454.
C. Rutherglen, D. Jain, P. Burke, Nat. Nanotechnol. 2009, 4, 811.
H. Wang, Y. Yuan, L. Wei, K. Goh, D. Yu, Y. Chen, Carbon 2015, 81, 1.
X. Feng, S. W. Chee, R. Sharma, K. Liu, X. Xie, Q. Li, S. Fan, K. Jiang, Nano Res. 2011, 4, 767.
J. C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, G. A. J. Amaratunga, Nano Lett. 2002, 2, 1191.
B. Liu, J. Liu, X. Tu, J. Zhang, M. Zheng, C. Zhou, Nano Lett. 2013, 13, 4416.
L.-M. Peng, Z. Zhang, S. Wang, Mater. Today 2014, 17, 433.
D. M. Wilson, S. Hoyt, J. Janata, K. Booksh, L. Obando, IEEE Sens. J. 2001, 1, 256.
M. Joseyacaman, M. Mikiyoshida, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett. 1993, 62, 202.
C. Kocabas, S.-H. Hur, A. Gaur, M. A. Meitl, M. Shim, J. A. Rogers, Small 2005, 1, 1110.
X. Xie, S. H. Jin, M. A. Wahab, A. E. Islam, C. Zhang, F. Du, E. Seabron, T. Lu, S. N. Dunham, H. I. Cheong, Y.-C. Tu, Z. Guo, H. U. Chung, Y. Li, Y. Liu, J.-H. Lee, J. Song, Y. Huang, M. A. Alam, W. L. Wilson, J. A. Rogers, Nat. Commun. 2014, 5, 5332.
M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H. S. PhilipWong, S. Mitra, Nature 2013, 501, 526.
V. Chakrapani, A. B. Anderson, S. D. Wolter, B. R. Stoner, G. U. Sumanasekera, J. C. Angus, Science 2007, 318, 1424.
W. A. Deheer, A. Chatelain, D. Ugarte, Science 1995, 270, 1179.
S. A. McGill, S. G. Rao, P. Manandhar, P. Xiong, S. Hong, Appl. Phys. Lett. 2006, 89, 163123.
P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2007, 2, 605.
N. Yoshihara, H. Ago, M. Tsuji, J. Phys. Chem. C 2007, 111, 11577.
Q. F. Pengfei, O. Vermesh, M. Grecu, A. Javey, O. Wang, H. J. Dai, S. Peng, K. J. Cho, Nano Lett. 2003, 3, 347.
S. Sawada, N. Hamada, Solid State Commun. 1992, 83, 917.
Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Appl. Phys. Lett. 2005, 86, 073105.
H. Wang, P. Wei, Y. Li, J. Han, H. R. Lee, B. D. Naab, N. Liu, C. Wang, E. Adijanto, B. C. K. Tee, S. Morishita, Q. Li, Y. Gao, Y. Cui, Z. Bao, Proc. Natl. Acad. Sci. USA 2014, 111, 4776.
D. Shahrjerdi, A. D. Franklin, S. Oida, J. A. Ott, G. S. Tulevski, W. Haensch, ACS Nano 2013, 7, 8303.
M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47.
S. Park, M. Vosguerichian, Z. Bao, Nanoscale 2013, 5, 1727.
A. D. Franklin, S. O. Koswatta, D. B. Farmer, J. T. Smith, L. Gignac, C. M. Breslin, S.-J. Han, G. S. Tulevski, H. Miyazoe, W. Haensch, J. Tersoff, Nano Lett. 2013, 13, 2490.
A. Balijepalli, S. Sinha, Y. Cao, in IEEE Int. Symp. Low Power Electron. Design 2007, p. 2.
S. Iijima, T. Ichihashi, Nature 1993, 363, 603.
S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K. Zhang, in IEEE Int. Electron Devices Meet. 2014, 3.7.1.
M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. W. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, R. E. Smalley, Science 2003, 301, 1519.
M. Mahjouri-Samani, Y. S. Zhou, W. Xiong, Y. Gao, M. Mitchell, Y. F. Lu, Nanotechnology 2009, 20, 495202.
C. Wang, J.-C. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, A. Javey, Nano Lett. 2012, 12, 1527.
S. Reich, L. Li, J. Robertson, Phys. Rev. B 2005, 72, 165423.
Q. Cao, H. S. Kim, N. Pimparkar, J. P. Kulkarni, C. J. Wang, M. Shim, K. Roy, M. A. Alam, J. A. Rogers, Nature 2008, 454, 495.
N. Komatsu, F. Wang, Materials 2010, 3, 3818.
S. W. Hong, T. Banks, J. A. Rogers, Adv. Mater. 2010, 22, 1826.
F.-B. Rao, T. Li, Y.-L. Wang, Phys. E (Amsterdam, Neth.) 2008, 40, 779.
M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. McLean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, D. J. Walls, Science 2003, 302, 1545.
M. M. Shulaker, G. Pitner, G. Hills, M. Giachino, H.-S. P. Wong, S. Mitra, in IEEE Int. Electron Devices Meet., IEEE, Piscataway, NJ, USA 2014, 812.
S. Shekhar, M. Erementchouk, M. N. Leuenberger, S. I. Khondaker, Appl. Phys. Lett. 2011, 98, 243121.
X. Xie, M. Wahab, Y. Li, A. E. Islam, B. Tomic, J. Huang, B. Burns, E. Seabron, S. Dunham, F. Du, J. Lin, W. Wilson, J. Song, Y. Huang, M. Alam, J. A. Rogers, J. Appl. Phys. 2015, 117, 134303.
J. Lu, S. Nagase, X. W. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. X. Gao, D. P. Yu, H. Q. Ye, W. N. Mei, Y. S. Zhou, J. Am. Chem. Soc. 2006, 128, 5114.
H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, M. Tsuji, Chem. Phys. Lett. 2005, 408, 433.
A. E. Islam, P. Nikolaev, P. B. Amama, S. Saber, D. Zakharov, D. Huffman, M. Erford, G. Sargent, S. L. Semiatin, E. A. Stach, B. Maruyama, Nano Lett. 2014, 14, 4997.
D. Golbe
2010; 10
2007; 101
2013; 3
2006; 31
1991; 354
2010; 107
2010; 108
2004; 4
2014; 24
2008; 105
2014; 29
2013; 7
2008; 101
2013; 8
2012; 12
2013; 5
2012; 11
1993; 363
1998; 393
2013; 9
2010; 22
2012; 134
2010; 1
2010; 25
2015; 81
2010; 114
2008; 29
2014; 14
2002; 149
2007; 7
2007; 2
2014; 17
2005; 72
2010; 3
2008; 112
2008; 111
2010; 2
2010; 5
2010; 4
2012; 22
1998; 11
2014; 10
2004; 43
2011; 2
2010; 35
2002; 74
2015; 51
2013; 501
2013; 101
2014; 49
2002; 2
2007; 90
2005; 86
2014; 47
2006; 110
2005; 87
2002; 4
2008; 55
2005; 81
1999; 103
2011; 4
2011; 6
2011; 5
2004; 304
1995; 270
2011; 133
2012; 50
2007; 157
2010; 49
2012; 111
2013; 339
2002; 64
2002; 360
2005; 127
2005; 5
2005; 95
2000; 84
2005; 408
2005; 1
2005; 409
2015; 117
2008; 41
2009; 460
2012; 48
2008; 40
2005; 16
2005; 17
2007; 318
2008; 130
2009; 106
2004; 126
1993; 62
2013; 24
2002; 51
2013; 23
2002; 355
2011; 11
2008; 8
2011; 98
2008; 3
2005; 26
2008; 1
2008; 2
2014; 61
2001; 105
2004; 138
2014; 5
2003; 90
2000
2013; 13
2001; 292
2015; 44
2003; 2
2003; 3
2011; 21
2003; 5
2000; 287
2003; 125
2014; 8
2003; 83
2001; 13
2006; 128
2009; 323
1992; 83
2011; 334
2007; 129
2009; 21
2009; 20
2012
2011
2002; 297
2006; 16
2008; 19
2013; 42
2011; 40
2000; 317
2009
2011; 30
2008
2007
2006; 18
2006; 6
2006
2005
2004
2008; 96
2006; 1
2002
2009; 131
2006; 314
2008; 321
2014; 111
2007; 54
2014; 510
2011; 332
2014; 115
2010; 82
2001; 80
2014; 105
2004; 96
2012; 3
2000; 38
2003; 424
2006; 89
2006; 88
2007; 111
2010; 132
2003; 382
2009; 9
2013; 498
2009; 8
2013; 135
2006; 384
2014
2001; 1
2009; 4
2008; 454
1996; 273
2012; 6
2003; 302
2009; 2
2003; 301
2012; 7
1999; 313
1998; 31
2012; 5
2010; 96
2014; 104
2012; 8
e_1_2_10_271_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_256_1
e_1_2_10_279_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_272_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_234_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_261_1
Razavi B. (e_1_2_10_125_1) 2000
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
Ross J. R. H. (e_1_2_10_186_1) 2012
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_102_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
Shulaker M. M. (e_1_2_10_64_1) 2014
Van Holde K. E. (e_1_2_10_227_1) 1998; 11
e_1_2_10_250_1
e_1_2_10_273_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
Wei H. (e_1_2_10_56_1) 2011
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_247_1
Patil N. (e_1_2_10_83_1) 2009
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
Schroder D. K. (e_1_2_10_124_1) 2006
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_274_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_259_1
Balijepalli A. (e_1_2_10_78_1) 2007
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
Natarajan S. (e_1_2_10_122_1) 2014
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_263_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_252_1
e_1_2_10_275_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_32_1
Wong H. S. P. (e_1_2_10_77_1) 2011
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_120_1
e_1_2_10_166_1
Jorio A. (e_1_2_10_73_1) 2008
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
Mason A. (e_1_2_10_135_1) 2014
e_1_2_10_238_1
e_1_2_10_276_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_79_1
e_1_2_10_242_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
e_1_2_10_280_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_239_1
e_1_2_10_216_1
e_1_2_10_254_1
e_1_2_10_277_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_281_1
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_24_1
e_1_2_10_270_1
e_1_2_10_108_1
Göpel W. (e_1_2_10_134_1) 2008
e_1_2_10_217_1
e_1_2_10_232_1
e_1_2_10_278_1
e_1_2_10_255_1
e_1_2_10_157_1
Kreupl F. (e_1_2_10_9_1) 2004
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_282_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
Schwierz F. (e_1_2_10_127_1) 2002
References_xml – volume: 9
  start-page: 4311
  year: 2009
  publication-title: Nano Lett.
– volume: 4
  start-page: 811
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 447
  year: 2004
  publication-title: Nano Lett.
– volume: 9
  start-page: 3203
  year: 2009
  publication-title: Nano Lett.
– volume: 3
  start-page: 387
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 1109
  year: 2012
  publication-title: ACS Nano
– volume: 31
  start-page: 455
  year: 2006
  publication-title: MRS Bull.
– volume: 393
  start-page: 730
  year: 1998
  publication-title: Nature
– volume: 107
  start-page: 094501
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 405204
  year: 2013
  publication-title: Nanotechnology
– volume: 128
  start-page: 15824
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5332
  year: 2014
  publication-title: Nat. Commun.
– volume: 88
  start-page: 233506
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 1364
  year: 2006
  publication-title: Nano Lett.
– year: 2014
– volume: 90
  start-page: 217401
  year: 2003
  publication-title: Phys. Rev. Lett.
– start-page: 3.7.1
  year: 2014
  publication-title: IEEE Int. Electron Devices Meet.
– volume: 83
  start-page: 1851
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 767
  year: 2011
  publication-title: Nano Res.
– volume: 74
  start-page: 355
  year: 2002
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– year: 2008
– volume: 134
  start-page: 1256
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 065304
  year: 2008
  publication-title: J. Phys. D: Appl. Phys.
– volume: 111
  start-page: 17879
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 40
  start-page: 2278
  year: 2008
  publication-title: Phys. E (Amsterdam, Neth.)
– volume: 6
  start-page: 2487
  year: 2012
  publication-title: ACS Nano
– volume: 112
  start-page: 3849
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 460
  start-page: 250
  year: 2009
  publication-title: Nature
– volume: 31
  start-page: 461
  year: 2006
  publication-title: MRS Bull.
– volume: 9
  start-page: 2245
  year: 2013
  publication-title: Small
– volume: 117
  start-page: 134303
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 7454
  year: 2012
  publication-title: ACS Nano
– volume: 133
  start-page: 5232
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2659
  year: 2013
  publication-title: ACS Nano
– volume: 49
  start-page: 3653
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 338
  year: 2003
  publication-title: Nat. Mater.
– volume: 2
  start-page: 1191
  year: 2002
  publication-title: Nano Lett.
– volume: 21
  start-page: 29
  year: 2009
  publication-title: Adv. Mater.
– volume: 111
  start-page: 054511
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: 918
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 6471
  year: 2012
  publication-title: ACS Nano
– volume: 24
  start-page: 3241
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 103
  start-page: 2555
  year: 1999
  publication-title: Synth. Met.
– volume: 10
  start-page: 3739
  year: 2010
  publication-title: J. Nanosci. Nanotechnol.
– volume: 134
  start-page: 14019
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 392
  year: 2014
  publication-title: J. Mater. Res.
– volume: 22
  start-page: 19858
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 347
  year: 2003
  publication-title: Nano Lett.
– volume: 31
  start-page: L34
  year: 1998
  publication-title: J. Phys. D: Appl. Phys.
– volume: 16
  start-page: 635
  year: 2005
  publication-title: Nanotechnology
– volume: 111
  start-page: 4776
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 495202
  year: 2009
  publication-title: Nanotechnology
– start-page: 535
  year: 2009
  publication-title: IEEE Int. Electron. Devices Meet.
– volume: 8
  start-page: 8730
  year: 2014
  publication-title: ACS Nano
– volume: 7
  start-page: 8303
  year: 2013
  publication-title: ACS Nano
– volume: 5
  start-page: 4169
  year: 2011
  publication-title: ACS Nano
– year: 2002
– volume: 270
  start-page: 1179
  year: 1995
  publication-title: Science
– volume: 101
  start-page: 1567
  year: 2013
  publication-title: Proc. IEEE
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 273
  start-page: 483
  year: 1996
  publication-title: Science
– volume: 321
  start-page: 101
  year: 2008
  publication-title: Science
– volume: 25
  start-page: 1875
  year: 2010
  publication-title: J. Mater. Res.
– volume: 2
  start-page: 071601
  year: 2009
  publication-title: Appl. Phys. Expr.
– volume: 49
  start-page: 190
  year: 2014
  publication-title: IEEE J. Solid‐State Circuits
– volume: 318
  start-page: 1424
  year: 2007
  publication-title: Science
– volume: 48
  start-page: 2409
  year: 2012
  publication-title: Chem. Commun.
– volume: 4
  start-page: 6251
  year: 2010
  publication-title: ACS Nano
– volume: 8
  start-page: 347
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 84
  start-page: 2941
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 510
  start-page: 522
  year: 2014
  publication-title: Nature
– volume: 129
  start-page: 9014
  year: 2007
  publication-title: J. Am. Chem. Soc.
– year: 2009
– start-page: 23.1.1
  year: 2011
  publication-title: IEEE Int. Electron. Devices Meet.
– volume: 29
  start-page: 1037
  year: 2008
  publication-title: IEEE Electron Device Lett.
– volume: 355
  start-page: 497
  year: 2002
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 1299
  year: 2013
  publication-title: ACS Nano
– volume: 17
  start-page: 433
  year: 2014
  publication-title: Mater. Today
– volume: 13
  start-page: 4416
  year: 2013
  publication-title: Nano Lett.
– volume: 314
  start-page: 974
  year: 2006
  publication-title: Science
– volume: 302
  start-page: 1545
  year: 2003
  publication-title: Science
– volume: 6
  start-page: 156
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 26
  start-page: 84
  year: 2005
  publication-title: IEEE Electron Device Lett.
– volume: 111
  start-page: 7564
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 334
  start-page: 917
  year: 2011
  publication-title: Science
– volume: 301
  start-page: 344
  year: 2003
  publication-title: Science
– volume: 5
  start-page: 6297
  year: 2011
  publication-title: ACS Nano
– volume: 2
  start-page: 2195
  year: 2008
  publication-title: ACS Nano
– volume: 5
  start-page: 139
  year: 2003
  publication-title: N. J. Phys.
– volume: 9
  start-page: 800
  year: 2009
  publication-title: Nano Lett.
– volume: 21
  start-page: 3210
  year: 2009
  publication-title: Adv. Mater.
– volume: 2
  start-page: 605
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 62
  start-page: 202
  year: 1993
  publication-title: Appl. Phys. Lett.
– volume: 44
  start-page: 566
  year: 2015
  publication-title: Chem. Lett.
– volume: 424
  start-page: 654
  year: 2003
  publication-title: Nature
– volume: 54
  start-page: 2352
  year: 2007
  publication-title: IEEE Trans. Electron Devices
– volume: 5
  start-page: 757
  year: 2005
  publication-title: Nano Lett.
– start-page: 812
  year: 2014
– volume: 87
  start-page: 173101
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 706
  year: 2008
  publication-title: Nano Lett.
– volume: 9
  start-page: 4285
  year: 2009
  publication-title: Nano Lett.
– volume: 2
  start-page: 230
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 98
  start-page: 243121
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 7412
  year: 2012
  publication-title: ACS Nano
– volume: 19
  start-page: 295202
  year: 2008
  publication-title: Nanotechnology
– volume: 4
  start-page: 35
  year: 2004
  publication-title: Nano Lett.
– volume: 5
  start-page: 5041
  year: 2014
  publication-title: Nat. Commun.
– volume: 106
  start-page: 2506
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 858
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 61
  start-page: 4273
  year: 2014
  publication-title: IEEE Trans. Electron Devices
– volume: 4
  start-page: 864
  year: 2011
  publication-title: ChemSusChem
– volume: 114
  start-page: 4773
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 554
  year: 2014
  publication-title: ACS Nano
– volume: 21
  start-page: 11815
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 12641
  year: 2014
  publication-title: ACS Nano
– volume: 297
  start-page: 593
  year: 2002
  publication-title: Science
– volume: 89
  start-page: 163123
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 135
  start-page: 5569
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 96
  start-page: 6694
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 3818
  year: 2010
  publication-title: Materials
– volume: 132
  start-page: 16747
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 189
  year: 2009
  publication-title: Nano Lett.
– volume: 5
  start-page: 1727
  year: 2013
  publication-title: Nanoscale
– volume: 332
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 2
  start-page: 638
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 5408
  year: 2011
  publication-title: Nano Lett.
– volume: 292
  start-page: 706
  year: 2001
  publication-title: Science
– volume: 127
  start-page: 5294
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 083107
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 3299
  year: 2014
  publication-title: Small
– volume: 22
  start-page: 2276
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 103
  start-page: 4330
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 54
  start-page: 2369
  year: 2007
  publication-title: IEEE Trans. Electron Devices
– volume: 11
  start-page: 23
  year: 2011
  publication-title: Nano Lett.
– volume: 339
  start-page: 182
  year: 2013
  publication-title: Science
– year: 2014
  publication-title: Nano Res.
– volume: 304
  start-page: 1129
  year: 2004
  publication-title: Science
– volume: 317
  start-page: 497
  year: 2000
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 96
  year: 2006
  publication-title: Nano Lett.
– year: 2005
– volume: 2
  start-page: 703
  year: 2002
  publication-title: Nano Lett.
– volume: 40
  start-page: 779
  year: 2008
  publication-title: Phys. E (Amsterdam, Neth.)
– volume: 4
  start-page: 7431
  year: 2010
  publication-title: ACS Nano
– volume: 105
  start-page: 213109
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 125
  start-page: 5636
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 125
  start-page: 3370
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1850
  year: 2009
  publication-title: Nano Lett.
– volume: 7
  start-page: 22
  year: 2007
  publication-title: Nano Lett.
– volume: 86
  start-page: 073105
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 315
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 487
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 6831
  year: 2013
  publication-title: ACS Nano
– volume: 47
  start-page: 2273
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 3434
  year: 2014
  publication-title: ACS Nano
– volume: 131
  start-page: 14642
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2224
  year: 2008
  publication-title: Nano Lett.
– volume: 90
  start-page: 123112
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 1130
  year: 2012
  publication-title: Small
– volume: 23
  start-page: 5150
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 88
  start-page: 233120
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 72
  start-page: 165423
  year: 2005
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 131
  year: 2002
  publication-title: J. Nanopart. Res.
– volume: 4
  start-page: 1395
  year: 2004
  publication-title: Nano Lett.
– start-page: 315
  year: 2014
– volume: 16
  start-page: 2141
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 1826
  year: 2010
  publication-title: Adv. Mater.
– volume: 1
  start-page: 256
  year: 2001
  publication-title: IEEE Sens. J.
– start-page: 683
  year: 2004
– volume: 42
  start-page: 2592
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 90
  start-page: 023516
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 133
  start-page: 621
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 13808
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 599
  year: 2009
  publication-title: Nano Res.
– volume: 101
  start-page: 256804
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 3849
  year: 2011
  publication-title: ACS Nano
– volume: 5
  start-page: 388
  year: 2012
  publication-title: Nano Res.
– volume: 95
  start-page: 146805
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 313
  start-page: 91
  year: 1999
  publication-title: Chem. Phys. Lett.
– volume: 138
  start-page: 277
  year: 2004
  publication-title: J. Power Sources
– volume: 9
  start-page: 542
  year: 2009
  publication-title: Nano Lett.
– volume: 339
  start-page: 535
  year: 2013
  publication-title: Science
– volume: 96
  start-page: 201
  year: 2008
  publication-title: Proc. IEEE
– volume: 13
  start-page: 2490
  year: 2013
  publication-title: Nano Lett.
– volume: 126
  start-page: 10520
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 531
  year: 2008
– volume: 8
  start-page: 180
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 7
  year: 2005
  publication-title: Electroanalysis
– volume: 4
  start-page: 543
  year: 2004
  publication-title: Nano Lett.
– volume: 18
  start-page: 304
  year: 2006
  publication-title: Adv. Mater.
– volume: 5
  start-page: 531
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 132
  start-page: 11125
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 498
  start-page: 443
  year: 2013
  publication-title: Nature
– volume: 9
  start-page: 1002
  year: 2009
  publication-title: Nano Lett.
– volume: 4
  start-page: 963
  year: 2011
  publication-title: Nano Res.
– volume: 105
  start-page: 1405
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 1460
  year: 2013
  publication-title: Sci. Rep.
– volume: 125
  start-page: 11186
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 764
  year: 2002
  publication-title: Russ. Chem. Bull.
– start-page: 2
  year: 2007
  publication-title: IEEE Int. Symp. Low Power Electron. Design
– volume: 64
  start-page: 399
  year: 2002
  publication-title: Microelect. Eng.
– volume: 1
  start-page: 60
  year: 2006
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 167
  year: 2009
  publication-title: Nano Res.
– volume: 38
  start-page: 2017
  year: 2000
  publication-title: Carbon
– volume: 409
  start-page: 47
  year: 2005
  publication-title: Phys. Rep.
– volume: 14
  start-page: 4997
  year: 2014
  publication-title: Nano Lett.
– start-page: 23.2.1
  year: 2011
– volume: 1
  start-page: 114001
  year: 2008
  publication-title: Appl. Phys. Expr.
– volume: 80
  start-page: 1
  year: 2001
  publication-title: Carbon Nanotubes
– volume: 105
  start-page: 11424
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 501
  start-page: 526
  year: 2013
  publication-title: Nature
– volume: 51
  start-page: 4712
  year: 2015
  publication-title: Chem. Commun.
– volume: 360
  start-page: 229
  year: 2002
  publication-title: Chem. Phys. Lett.
– volume: 50
  start-page: 5093
  year: 2012
  publication-title: Carbon
– volume: 8
  start-page: 498
  year: 2009
  publication-title: IEEE Trans. Nanotechnol.
– volume: 2
  start-page: 309
  year: 2011
  publication-title: Nat. Commun.
– volume: 81
  start-page: 223
  year: 2005
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 9
  start-page: 1497
  year: 2009
  publication-title: Nano Lett.
– volume: 454
  start-page: 495
  year: 2008
  publication-title: Nature
– volume: 108
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 101
  start-page: 093710
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 115
  start-page: 054315
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 35
  start-page: 315
  year: 2010
  publication-title: MRS Bull.
– volume: 110
  start-page: 2108
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 128
  start-page: 5114
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 895
  year: 2010
  publication-title: ACS Nano
– volume: 130
  start-page: 11840
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 10214
  year: 2014
  publication-title: ACS Nano
– volume: 382
  start-page: 381
  year: 2003
  publication-title: Chem. Phys. Lett.
– volume: 12
  start-page: 758
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 1497
  year: 2005
  publication-title: Nano Lett.
– volume: 43
  start-page: 6140
  year: 2004
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 2971
  year: 2013
  publication-title: ACS Nano
– volume: 5
  start-page: 5071
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 4852
  year: 2011
  publication-title: Nano Lett.
– volume: 4
  start-page: 317
  year: 2004
  publication-title: Nano Lett.
– volume: 47
  start-page: 2446
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 1107
  year: 2006
  publication-title: Nano Lett.
– volume: 40
  start-page: 239
  year: 2011
  publication-title: Chem. Lett.
– volume: 2
  start-page: 341
  year: 2008
  publication-title: Nat. Photonics
– volume: 21
  start-page: 3087
  year: 2009
  publication-title: Adv. Mater.
– volume: 9
  start-page: 44
  year: 2009
  publication-title: Nano Lett.
– volume: 363
  start-page: 603
  year: 1993
  publication-title: Nature
– volume: 14
  start-page: 512
  year: 2014
  publication-title: Nano Lett.
– volume: 2
  start-page: 1306
  year: 2010
  publication-title: Nanoscale
– volume: 3
  start-page: 1199
  year: 2012
  publication-title: Nat. Commun.
– volume: 6
  start-page: 451
  year: 2012
  publication-title: ACS Nano
– volume: 30
  start-page: 1103
  year: 2011
  publication-title: IEEE Trans. Computer‐Aided Design Integr. Circuits Syst.
– volume: 40
  start-page: 1324
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 541
  year: 2011
  publication-title: Nat. Commun.
– year: 2000
– volume: 83
  start-page: 917
  year: 1992
  publication-title: Solid State Commun.
– volume: 4
  start-page: 1696
  year: 2010
  publication-title: ACS Nano
– volume: 11
  start-page: 933
  year: 1998
  publication-title: Biochem. Mol. Biol.
– volume: 106
  start-page: 063705
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 213
  year: 2012
  publication-title: Nat. Mater.
– volume: 55
  start-page: 1328
  year: 2008
  publication-title: IEEE Trans. Electron Devices
– volume: 8
  start-page: 2682
  year: 2008
  publication-title: Nano Lett.
– volume: 354
  start-page: 56
  year: 1991
  publication-title: Nature
– volume: 81
  start-page: 1
  year: 2015
  publication-title: Carbon
– volume: 2
  start-page: 17
  year: 2007
  publication-title: Nat. Nanotechnol.
– year: 2012
– volume: 13
  start-page: 1008
  year: 2001
  publication-title: Chem. Mater.
– volume: 11
  start-page: 5020
  year: 2011
  publication-title: Nano Lett.
– volume: 96
  start-page: 083110
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 301
  start-page: 1519
  year: 2003
  publication-title: Science
– volume: 157
  start-page: 570
  year: 2007
  publication-title: Synth. Met.
– volume: 149
  start-page: A1058
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 384
  start-page: 322
  year: 2006
  publication-title: Anal. Bioanal.Chem.
– volume: 6
  start-page: 1747
  year: 2006
  publication-title: Nano Lett.
– volume: 1
  start-page: 1110
  year: 2005
  publication-title: Small
– year: 2006
– volume: 287
  start-page: 1801
  year: 2000
  publication-title: Science
– volume: 408
  start-page: 433
  year: 2005
  publication-title: Chem. Phys. Lett.
– volume: 82
  start-page: 205406
  year: 2010
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 193
  year: 2003
  publication-title: Nano Lett.
– volume: 111
  start-page: 11577
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 1937
  year: 2009
  publication-title: Nano Lett.
– volume: 12
  start-page: 1527
  year: 2012
  publication-title: Nano Lett.
– volume: 132
  start-page: 13994
  year: 2010
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_10_249_1
  doi: 10.1109/JSSC.2013.2282092
– ident: e_1_2_10_36_1
  doi: 10.1038/nnano.2011.1
– ident: e_1_2_10_177_1
  doi: 10.1002/anie.200460356
– volume-title: Sensing Technology: Current Status and Future Trends I
  year: 2014
  ident: e_1_2_10_135_1
  contributor:
    fullname: Mason A.
– ident: e_1_2_10_169_1
  doi: 10.1016/j.cplett.2003.10.080
– ident: e_1_2_10_264_1
  doi: 10.1021/nn200198b
– ident: e_1_2_10_257_1
  doi: 10.1023/A:1016064212984
– ident: e_1_2_10_247_1
  doi: 10.1126/science.1201938
– ident: e_1_2_10_162_1
  doi: 10.1063/1.4902915
– ident: e_1_2_10_214_1
  doi: 10.1039/C5CC00167F
– ident: e_1_2_10_115_1
  doi: 10.1126/science.1058782
– ident: e_1_2_10_190_1
  doi: 10.1016/S0009-2614(99)01029-5
– ident: e_1_2_10_252_1
– ident: e_1_2_10_196_1
  doi: 10.1021/nn503347a
– ident: e_1_2_10_11_1
  doi: 10.1557/jmr.2013.322
– ident: e_1_2_10_270_1
  doi: 10.1021/jp710691j
– ident: e_1_2_10_8_1
  doi: 10.1021/nn1025675
– ident: e_1_2_10_50_1
  doi: 10.1063/1.2108127
– ident: e_1_2_10_256_1
  doi: 10.1088/0957-4484/16/6/003
– ident: e_1_2_10_245_1
  doi: 10.1109/TED.2014.2360869
– start-page: 23.2.1
  volume-title: IEEE Int. Electron Devices Meet
  year: 2011
  ident: e_1_2_10_56_1
  contributor:
    fullname: Wei H.
– ident: e_1_2_10_101_1
  doi: 10.1038/nature13434
– ident: e_1_2_10_193_1
  doi: 10.1039/c1jm10399g
– ident: e_1_2_10_96_1
  doi: 10.1016/j.carbon.2014.09.063
– ident: e_1_2_10_170_1
  doi: 10.1021/jp906893m
– ident: e_1_2_10_34_1
  doi: 10.1038/nature07110
– ident: e_1_2_10_58_1
  doi: 10.1063/1.2364461
– ident: e_1_2_10_275_1
  doi: 10.1126/science.1096524
– ident: e_1_2_10_15_1
  doi: 10.1016/j.jpowsour.2004.06.014
– ident: e_1_2_10_66_1
  doi: 10.1016/j.physe.2007.11.034
– ident: e_1_2_10_175_1
  doi: 10.1002/smll.200500120
– ident: e_1_2_10_216_1
  doi: 10.1038/ncomms1545
– ident: e_1_2_10_266_1
  doi: 10.1088/1367-2630/5/1/139
– ident: e_1_2_10_205_1
  doi: 10.1021/nl8034866
– ident: e_1_2_10_69_1
  doi: 10.1007/s003390201278
– ident: e_1_2_10_179_1
  doi: 10.1063/1.2715031
– ident: e_1_2_10_213_1
  doi: 10.1021/nn400053k
– ident: e_1_2_10_24_1
  doi: 10.1038/nnano.2010.220
– ident: e_1_2_10_82_1
  doi: 10.1109/TCAD.2011.2121010
– ident: e_1_2_10_68_1
  doi: 10.1021/nl061534m
– ident: e_1_2_10_174_1
  doi: 10.1038/31579
– ident: e_1_2_10_168_1
  doi: 10.1021/ja109018h
– ident: e_1_2_10_61_1
  doi: 10.1039/c3nr33560g
– ident: e_1_2_10_137_1
  doi: 10.1166/jnn.2010.2939
– ident: e_1_2_10_92_1
  doi: 10.1016/j.mattod.2014.07.008
– ident: e_1_2_10_248_1
  doi: 10.1021/nn304794w
– ident: e_1_2_10_110_1
  doi: 10.1557/mrs2010.554
– ident: e_1_2_10_71_1
  doi: 10.1016/S0008-6223(00)00058-0
– ident: e_1_2_10_114_1
  doi: 10.1002/9781118958254.ch16
– ident: e_1_2_10_278_1
  doi: 10.1021/nl202695v
– ident: e_1_2_10_250_1
  doi: 10.1103/PhysRevLett.101.256804
– ident: e_1_2_10_81_1
  doi: 10.1021/nn302185d
– ident: e_1_2_10_195_1
  doi: 10.1021/ja8035724
– start-page: 3.7.1
  year: 2014
  ident: e_1_2_10_122_1
  publication-title: IEEE Int. Electron Devices Meet.
  contributor:
    fullname: Natarajan S.
– ident: e_1_2_10_132_1
  doi: 10.1007/978-0-387-74363-9
– start-page: 531
  volume-title: Carbon Nanotubes
  year: 2008
  ident: e_1_2_10_73_1
  doi: 10.1007/978-3-540-72865-8
  contributor:
    fullname: Jorio A.
– ident: e_1_2_10_271_1
  doi: 10.1021/ja9068529
– ident: e_1_2_10_163_1
  doi: 10.1021/nl802661z
– ident: e_1_2_10_80_1
  doi: 10.1021/nn203516z
– ident: e_1_2_10_215_1
  doi: 10.1246/cl.141193
– ident: e_1_2_10_41_1
  doi: 10.1002/elan.200403113
– ident: e_1_2_10_112_1
  doi: 10.1039/B920457C
– ident: e_1_2_10_131_1
  doi: 10.1557/mrs2006.119
– ident: e_1_2_10_48_1
  doi: 10.1103/PhysRevLett.95.146805
– ident: e_1_2_10_5_1
  doi: 10.1016/S0167-9317(02)00814-6
– ident: e_1_2_10_243_1
  doi: 10.1088/0957-4484/24/40/405204
– ident: e_1_2_10_220_1
  doi: 10.1021/ja312282g
– ident: e_1_2_10_57_1
  doi: 10.1021/nl0259232
– ident: e_1_2_10_121_1
  doi: 10.1063/1.4916537
– ident: e_1_2_10_268_1
  doi: 10.1126/science.1072631
– ident: e_1_2_10_31_1
  doi: 10.1038/nnano.2009.355
– volume-title: Modern Microwave Transistors: Theory, Design, and Performance
  year: 2002
  ident: e_1_2_10_127_1
  contributor:
    fullname: Schwierz F.
– ident: e_1_2_10_201_1
  doi: 10.1021/ja028599l
– ident: e_1_2_10_46_1
  doi: 10.1002/adma.200803551
– start-page: 2
  year: 2007
  ident: e_1_2_10_78_1
  publication-title: IEEE Int. Symp. Low Power Electron. Design
  doi: 10.1145/1283780.1283783
  contributor:
    fullname: Balijepalli A.
– ident: e_1_2_10_282_1
  doi: 10.1002/adfm.201300124
– ident: e_1_2_10_206_1
  doi: 10.1143/APEX.1.114001
– ident: e_1_2_10_221_1
  doi: 10.1038/ncomms6041
– ident: e_1_2_10_109_1
  doi: 10.1016/j.carbon.2012.06.049
– ident: e_1_2_10_265_1
  doi: 10.1016/S0379-6779(98)00278-1
– ident: e_1_2_10_67_1
  doi: 10.1021/ja0553203
– ident: e_1_2_10_141_1
  doi: 10.1016/j.physe.2007.09.185
– ident: e_1_2_10_207_1
  doi: 10.1038/nmat877
– ident: e_1_2_10_263_1
  doi: 10.1021/ja058214
– ident: e_1_2_10_228_1
  doi: 10.1063/1.4866577
– ident: e_1_2_10_130_1
  doi: 10.1557/mrs2006.118
– ident: e_1_2_10_171_1
  doi: 10.1088/0022-3727/41/6/065304
– ident: e_1_2_10_12_1
  doi: 10.1039/b904116h
– ident: e_1_2_10_281_1
  doi: 10.1021/nl203041n
– ident: e_1_2_10_13_1
  doi: 10.1038/nnano.2010.116
– ident: e_1_2_10_62_1
  doi: 10.1021/nn3026172
– ident: e_1_2_10_89_1
  doi: 10.1039/C2CS35325C
– ident: e_1_2_10_142_1
  doi: 10.1021/ja065767r
– ident: e_1_2_10_45_1
  doi: 10.1063/1.2209887
– ident: e_1_2_10_99_1
  doi: 10.1021/ja106609y
– ident: e_1_2_10_191_1
  doi: 10.1021/nl9014342
– ident: e_1_2_10_269_1
  doi: 10.1103/PhysRevLett.90.217401
– ident: e_1_2_10_209_1
  doi: 10.1021/nl034937k
– ident: e_1_2_10_229_1
– ident: e_1_2_10_47_1
  doi: 10.1002/smll.201400696
– ident: e_1_2_10_18_1
  doi: 10.1126/science.1213003
– ident: e_1_2_10_254_1
  doi: 10.1126/science.1087691
– ident: e_1_2_10_184_1
  doi: 10.1007/s12274-009-9013-z
– ident: e_1_2_10_161_1
  doi: 10.1063/1.1605793
– ident: e_1_2_10_165_1
  doi: 10.1007/s00339-005-3256-7
– ident: e_1_2_10_150_1
  doi: 10.1021/cm000787s
– ident: e_1_2_10_185_1
  doi: 10.1063/1.3402971
– ident: e_1_2_10_70_1
  doi: 10.1021/nl0256457
– ident: e_1_2_10_194_1
  doi: 10.1021/nl060068y
– ident: e_1_2_10_211_1
  doi: 10.1038/ncomms1313
– ident: e_1_2_10_97_1
  doi: 10.1038/ncomms2205
– ident: e_1_2_10_279_1
  doi: 10.1007/s00216-005-3400-4
– ident: e_1_2_10_95_1
  doi: 10.1017/CBO9781139164313
– ident: e_1_2_10_116_1
  doi: 10.1126/science.1133781
– ident: e_1_2_10_117_1
  doi: 10.1021/nn406301r
– ident: e_1_2_10_20_1
  doi: 10.1038/nature01797
– ident: e_1_2_10_93_1
  doi: 10.1126/science.1222453
– volume: 11
  start-page: 933
  year: 1998
  ident: e_1_2_10_227_1
  publication-title: Biochem. Mol. Biol.
  contributor:
    fullname: Van Holde K. E.
– start-page: 535
  year: 2009
  ident: e_1_2_10_83_1
  publication-title: IEEE Int. Electron. Devices Meet.
  contributor:
    fullname: Patil N.
– start-page: 683
  volume-title: IEEE Int. Electron. Devices Meet
  year: 2004
  ident: e_1_2_10_9_1
  contributor:
    fullname: Kreupl F.
– ident: e_1_2_10_219_1
  doi: 10.1002/smll.201202434
– ident: e_1_2_10_143_1
  doi: 10.1038/nnano.2006.192
– ident: e_1_2_10_102_1
  doi: 10.1038/srep01460
– ident: e_1_2_10_241_1
  doi: 10.1103/PhysRevB.82.205406
– ident: e_1_2_10_87_1
  doi: 10.1038/nnano.2008.135
– ident: e_1_2_10_123_1
  doi: 10.1109/TNANO.2009.2016562
– ident: e_1_2_10_182_1
  doi: 10.1063/1.2431465
– volume-title: Heterogeneous Catalysis: Fundamentals and Applications
  year: 2012
  ident: e_1_2_10_186_1
  contributor:
    fullname: Ross J. R. H.
– ident: e_1_2_10_238_1
  doi: 10.1021/nl052145f
– ident: e_1_2_10_173_1
  doi: 10.1016/0038-1098(92)90911-R
– ident: e_1_2_10_202_1
  doi: 10.1126/science.1086534
– ident: e_1_2_10_63_1
  doi: 10.1021/nl203117h
– ident: e_1_2_10_277_1
  doi: 10.1021/nl902522f
– ident: e_1_2_10_253_1
  doi: 10.1021/ja046482m
– ident: e_1_2_10_105_1
  doi: 10.1021/ja036622c
– ident: e_1_2_10_203_1
  doi: 10.1021/nl0493794
– ident: e_1_2_10_204_1
  doi: 10.1143/APEX.2.071601
– ident: e_1_2_10_103_1
  doi: 10.1021/ja070808k
– volume-title: Design of Analog CMOS Integrated Circuits
  year: 2000
  ident: e_1_2_10_125_1
  contributor:
    fullname: Razavi B.
– ident: e_1_2_10_244_1
  doi: 10.1103/PhysRevLett.84.2941
– ident: e_1_2_10_183_1
  doi: 10.1109/LED.2008.2001259
– ident: e_1_2_10_197_1
  doi: 10.1038/nnano.2006.52
– ident: e_1_2_10_147_1
  doi: 10.1021/nn405105y
– ident: e_1_2_10_187_1
  doi: 10.1039/c2jm33732k
– ident: e_1_2_10_178_1
  doi: 10.1021/ja042544x
– ident: e_1_2_10_60_1
  doi: 10.1002/adfm.201102814
– volume-title: Semiconductor Material and Device Characterization
  year: 2006
  ident: e_1_2_10_124_1
  contributor:
    fullname: Schroder D. K.
– ident: e_1_2_10_280_1
  doi: 10.1063/1.2211310
– ident: e_1_2_10_54_1
  doi: 10.1021/nl101513z
– ident: e_1_2_10_144_1
  doi: 10.1021/nl402259k
– ident: e_1_2_10_164_1
  doi: 10.1038/nmat3231
– ident: e_1_2_10_76_1
  doi: 10.1109/TED.2007.901882
– ident: e_1_2_10_29_1
  doi: 10.1073/pnas.0709734105
– start-page: 812
  volume-title: IEEE Int. Electron Devices Meet
  year: 2014
  ident: e_1_2_10_64_1
  contributor:
    fullname: Shulaker M. M.
– ident: e_1_2_10_235_1
  doi: 10.1063/1.2717855
– ident: e_1_2_10_218_1
  doi: 10.1021/nn204875a
– ident: e_1_2_10_226_1
  doi: 10.1246/cl.2011.239
– ident: e_1_2_10_10_1
  doi: 10.1126/science.270.5239.1179
– ident: e_1_2_10_251_1
  doi: 10.1007/s12274
– ident: e_1_2_10_43_1
  doi: 10.1021/nn1019384
– ident: e_1_2_10_79_1
  doi: 10.1063/1.3692048
– ident: e_1_2_10_39_1
  doi: 10.1126/science.287.5459.1801
– ident: e_1_2_10_224_1
  doi: 10.1038/ncomms6071
– ident: e_1_2_10_94_1
  doi: 10.1007/3-540-39947-X_1
– ident: e_1_2_10_154_1
  doi: 10.1021/jz9004762
– ident: e_1_2_10_158_1
  doi: 10.1021/nl501417h
– ident: e_1_2_10_37_1
  doi: 10.1038/nphoton.2008.94
– ident: e_1_2_10_74_1
  doi: 10.1021/nn901599g
– ident: e_1_2_10_129_1
  doi: 10.1109/JPROC.2013.2257633
– ident: e_1_2_10_19_1
  doi: 10.1002/adfm.200500937
– ident: e_1_2_10_6_1
  doi: 10.1109/TED.2008.922855
– ident: e_1_2_10_128_1
  doi: 10.1038/nnano.2010.89
– ident: e_1_2_10_35_1
  doi: 10.1021/nl050254o
– ident: e_1_2_10_72_1
  doi: 10.1126/science.1168049
– ident: e_1_2_10_236_1
  doi: 10.1109/TED.2007.903291
– ident: e_1_2_10_28_1
  doi: 10.1038/nature12502
– ident: e_1_2_10_156_1
  doi: 10.1021/nl801876h
– ident: e_1_2_10_88_1
  doi: 10.1039/b9nr00427k
– ident: e_1_2_10_14_1
  doi: 10.1021/nl803081j
– ident: e_1_2_10_2_1
  doi: 10.1126/science.1228061
– ident: e_1_2_10_225_1
  doi: 10.1088/0022-3727/31/8/002
– ident: e_1_2_10_51_1
  doi: 10.1021/nl060305x
– ident: e_1_2_10_188_1
  doi: 10.1023/A:1020174126542
– ident: e_1_2_10_108_1
  doi: 10.1021/nl803496s
– ident: e_1_2_10_55_1
  doi: 10.1021/nn403935v
– ident: e_1_2_10_234_1
  doi: 10.1088/0957-4484/19/29/295202
– ident: e_1_2_10_38_1
  doi: 10.1021/nl080814u
– ident: e_1_2_10_90_1
  doi: 10.1021/ar400314b
– ident: e_1_2_10_192_1
  doi: 10.1016/S0009-2614(02)00838-2
– ident: e_1_2_10_139_1
  doi: 10.1126/science.273.5274.483
– ident: e_1_2_10_180_1
  doi: 10.1021/jp071387w
– ident: e_1_2_10_52_1
  doi: 10.1021/nl0508624
– ident: e_1_2_10_246_1
  doi: 10.1063/1.3600664
– ident: e_1_2_10_255_1
  doi: 10.1126/science.1148841
– ident: e_1_2_10_181_1
  doi: 10.1002/adma.200501740
– ident: e_1_2_10_261_1
  doi: 10.1021/ja2008278
– ident: e_1_2_10_136_1
  doi: 10.1063/1.109315
– ident: e_1_2_10_223_1
  doi: 10.1021/nn201314t
– ident: e_1_2_10_21_1
  doi: 10.1021/nl035185x
– ident: e_1_2_10_160_1
  doi: 10.1016/S0009-2614(99)01379-2
– ident: e_1_2_10_33_1
  doi: 10.1021/nl9001074
– ident: e_1_2_10_189_1
  doi: 10.1021/jp056095e
– ident: e_1_2_10_210_1
  doi: 10.1038/nature08116
– ident: e_1_2_10_276_1
  doi: 10.1063/1.4864487
– ident: e_1_2_10_120_1
  doi: 10.1038/ncomms6332
– ident: e_1_2_10_233_1
  doi: 10.1007/s12274-011-0152-7
– ident: e_1_2_10_258_1
  doi: 10.1021/jp990882s
– ident: e_1_2_10_259_1
  doi: 10.1021/nn401998r
– ident: e_1_2_10_106_1
  doi: 10.1021/nl403515c
– ident: e_1_2_10_148_1
  doi: 10.1021/nl025602q
– ident: e_1_2_10_145_1
  doi: 10.1021/nl035097c
– ident: e_1_2_10_119_1
  doi: 10.1038/nnano.2013.56
– start-page: 23.1.1
  year: 2011
  ident: e_1_2_10_77_1
  publication-title: IEEE Int. Electron. Devices Meet.
  contributor:
    fullname: Wong H. S. P.
– ident: e_1_2_10_212_1
  doi: 10.1007/s12274-009-9057-0
– ident: e_1_2_10_232_1
  doi: 10.1063/1.3327521
– ident: e_1_2_10_118_1
  doi: 10.1021/nn505566r
– ident: e_1_2_10_198_1
  doi: 10.1021/ar500141j
– ident: e_1_2_10_260_1
  doi: 10.1007/s12274-011-0133-x
– ident: e_1_2_10_107_1
  doi: 10.1021/nn302720n
– ident: e_1_2_10_65_1
  doi: 10.1002/adma.200903238
– ident: e_1_2_10_133_1
  doi: 10.1109/7361.983465
– ident: e_1_2_10_75_1
  doi: 10.1073/pnas.1320045111
– volume-title: Sensors: Chemical and Biochemical Sensors
  year: 2008
  ident: e_1_2_10_134_1
  contributor:
    fullname: Göpel W.
– ident: e_1_2_10_26_1
  doi: 10.1021/nl203701g
– ident: e_1_2_10_1_1
  doi: 10.1038/363603a0
– ident: e_1_2_10_40_1
  doi: 10.1021/nl034010k
– ident: e_1_2_10_104_1
  doi: 10.1021/nl800967n
– ident: e_1_2_10_172_1
  doi: 10.1103/PhysRevB.72.165423
– ident: e_1_2_10_222_1
  doi: 10.1021/nn4000435
– ident: e_1_2_10_166_1
  doi: 10.1073/pnas.0811946106
– ident: e_1_2_10_237_1
  doi: 10.1038/nnano.2012.39
– ident: e_1_2_10_86_1
  doi: 10.1038/nnano.2007.300
– ident: e_1_2_10_151_1
  doi: 10.1021/jp012085b
– ident: e_1_2_10_27_1
  doi: 10.1038/nnano.2012.257
– ident: e_1_2_10_22_1
  doi: 10.1038/nnano.2007.77
– ident: e_1_2_10_152_1
  doi: 10.1016/j.cplett.2005.04.054
– ident: e_1_2_10_49_1
  doi: 10.1021/nl034841q
– ident: e_1_2_10_199_1
  doi: 10.1021/nn800723u
– ident: e_1_2_10_167_1
  doi: 10.1021/ja2096317
– ident: e_1_2_10_111_1
  doi: 10.3390/ma3073818
– ident: e_1_2_10_42_1
  doi: 10.1021/nl0612289
– ident: e_1_2_10_85_1
  doi: 10.1002/adma.200801995
– ident: e_1_2_10_240_1
  doi: 10.1021/nl803835z
– ident: e_1_2_10_3_1
  doi: 10.1002/adfm.201303865
– ident: e_1_2_10_149_1
  doi: 10.1021/ja3038992
– ident: e_1_2_10_208_1
  doi: 10.1126/science.1091911
– ident: e_1_2_10_272_1
  doi: 10.1088/0957-4484/20/49/495202
– ident: e_1_2_10_16_1
  doi: 10.1002/smll.201101594
– ident: e_1_2_10_113_1
  doi: 10.1021/nn503627h
– ident: e_1_2_10_217_1
  doi: 10.1021/nn203771u
– ident: e_1_2_10_157_1
  doi: 10.1557/JMR.2010.0264
– ident: e_1_2_10_200_1
  doi: 10.1126/science.1156588
– ident: e_1_2_10_91_1
  doi: 10.1002/cssc.201100177
– ident: e_1_2_10_239_1
  doi: 10.1063/1.3204971
– ident: e_1_2_10_25_1
  doi: 10.1021/nl400544q
– ident: e_1_2_10_274_1
  doi: 10.1073/pnas.1318851111
– ident: e_1_2_10_23_1
  doi: 10.1109/JPROC.2007.911051
– ident: e_1_2_10_159_1
  doi: 10.1039/c2cc16491d
– ident: e_1_2_10_155_1
  doi: 10.1016/S0009-2614(02)00283-X
– ident: e_1_2_10_17_1
  doi: 10.1149/1.1491235
– ident: e_1_2_10_30_1
  doi: 10.1021/nl802756u
– ident: e_1_2_10_153_1
  doi: 10.1021/nn901700u
– ident: e_1_2_10_53_1
  doi: 10.1063/1.1865343
– ident: e_1_2_10_98_1
  doi: 10.1021/ja102011h
– ident: e_1_2_10_231_1
  doi: 10.1007/s12274-012-0219-0
– ident: e_1_2_10_44_1
  doi: 10.1002/anie.201000659
– ident: e_1_2_10_84_1
  doi: 10.1038/498443a
– ident: e_1_2_10_32_1
  doi: 10.1021/nl2043375
– ident: e_1_2_10_100_1
  doi: 10.1021/ja106937y
– ident: e_1_2_10_242_1
  doi: 10.1063/1.1807523
– ident: e_1_2_10_267_1
  doi: 10.1016/j.physrep.2004.10.006
– ident: e_1_2_10_126_1
  doi: 10.1021/nn200919v
– ident: e_1_2_10_59_1
  doi: 10.1002/adma.200900550
– ident: e_1_2_10_146_1
  doi: 10.1021/nl9025488
– ident: e_1_2_10_230_1
– ident: e_1_2_10_176_1
  doi: 10.1021/ja034475c
– ident: e_1_2_10_273_1
  doi: 10.1016/j.synthmet.2007.06.012
– ident: e_1_2_10_138_1
  doi: 10.1038/354056a0
– ident: e_1_2_10_262_1
  doi: 10.1021/jp072887s
– ident: e_1_2_10_7_1
  doi: 10.1109/LED.2004.841440
– ident: e_1_2_10_4_1
  doi: 10.1021/nl0730965
– ident: e_1_2_10_140_1
  doi: 10.1063/1.3467971
SSID ssj0009606
Score 2.4834037
Snippet High purity semiconducting single‐walled carbon nanotubes (s‐SWCNTs) with a narrow diameter distribution are required for high‐performance transistors....
High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors....
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 7908
SubjectTerms carbon nanotubes
Collection
field-effect mobility
Integrated circuits
Integrity
on/off ratios
on/off ratios, semiconducting purity
Purity
semiconducting purity
Semiconductor devices
Single wall carbon nanotubes
transistor applications
Transistors
Utilities
Title Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications
URI https://api.istex.fr/ark:/67375/WNG-C1WXPXCF-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201502918
https://www.ncbi.nlm.nih.gov/pubmed/26540144
https://search.proquest.com/docview/1760871825
https://search.proquest.com/docview/1800476149
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMetqr2UA5R3eMlICE5pN97YTo6rhaWq1FIBpXuzPLYjqlYJ2s1KiBMfgc_IJ2HG6aa7CIFEL1EixXl4bM9_4snPjL3IKvAOimFa5cKneZAqhUypVJQgnfUYOUd25-GR2j_JD6ZyuvIXf8eH6D-4Uc-I4zV1cAvzvStoqPWRG4SCRpQZ_e1LND1SRe-v-FEkzyNsbyjTUuXFkto4EHvrxde80hZV8Nc_Sc51BRtd0OQWs8uH7zJPzncXLey6b79xHa_zdjvs5qU-5aOuQd1mG6G-w26sUAvvss8oNdFV8WNK7cKBkp_V_B203VIT_ANl2zc1YWTjIW4uws_vP-iLffB8bGfQ1BwH9aZdQJhzFM08OszIK-GjlQn1e-xk8ubjeD-9XLAhdSjjcOBE1waE2_ECwIkgnbYgCXQANk7QVRiKAyoaDHqsVqhMXUDJ5yx4oTNnh_fZZt3U4SHjVnk9qEq0qS5yK4tCBrykl4NKZ9iCdMJeLQ1mvnRcDtMRmIWhujN93SXsZbRnf5qdnVM2m5bm9OitGWen0-PpeGI-Jez50uAG-xhNnNg6NIu5ybQaYGCJwfRfzikIvIlip0zYg6619HcUCnUxRq4JE9Hm_3hiM3p9OOqPHv1Pocdsm_Yp70aIJ2yznS3CU1RPLTyLPeQX9foRqA
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAOvB_haSQEp7Qbbxwnx9WWZYHuUkFL92b5FYGKErTNSogTP4HfyC9hxmnSLkIgwSWSIztxPJ6Zb-zJZ4AnSWmcNfkwLlPu4tSLLDZJlsW8MMJqh5Fz4O6czbPpQfpqIbpsQvoXpuWH6BfcSDOCvSYFpwXp7VPWUO0CcRAiGl4k-XnYRJ0XpJs7b08ZpAigB7q9oYiLLM073sYB315vv-aXNmmIv_wOdK5j2OCEJlfAdN1vc0-OtlaN2bJff2F2_K_vuwqXTyAqG7Vz6hqc89V1uHSGuPAGfEC0id6K7VF2F9pK9rFib0zTnjbB3lHCfV0Rk2wo4uWT__HtOy3ae8fGemnqiqFdr5uV8ccMcTMLPjNQlrDRmT31m3Aweb4_nsYnZzbEFpEc2k70boYYdxw3xnIvrNRGENeB0WGPrsRo3CCowbhHywzBqfWI-qw2jsvE6uEt2Kjqyt8BpjMnB2WRDHOZp1rkufD4SCcGpUxwEskInnUSU59bag7VkjBzRWOn-rGL4GkQaF9NL48ooU0KdTh_ocbJ4WJvMZ6o9xE87iSuUM1o70RXvl4dq0RmA4wtMZ7-Q52cuDcR7xQR3G6nS_9GniE0xuA1Ah6E_pceq9HObNSX7v5Lo0dwYbo_21W7L-ev78FFuk9pOJzfh41mufIPEEw15mFQl58X1hXI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4lGch5WUkBKe0Gye2k-Nql6U8uqyA0r1ZfkWtipJqm5UQp_6E_kZ-CWOnm-4iBBJcIjmyE8fjmfnGnnwGeJ6U2hqdp3GZURtnjvFYJ5zHtNDMKIuRc-Du3Bvz3f3s7ZRNl_7ib_khugU3rxnBXnsFP7HlziVpqLKBNwgBDS2S_CqsZzylPvwafrwkkPL4PLDtpSwueJYvaBt7dGe1_YpbWvcj_O13mHMVwgYfNLoJatH7NvXkeHve6G3z_Rdix__5vFuwcQFQSb-dUbfhiqvuwI0l2sK7cIhYE30VmfjcLrSU5KgiH3TTnjVBPvl0-7ryPLKhiJev7sfZuV-yd5YM1EzXFUGrXjdz7U4JomYSPGYgLCH9pR31e7A_evV5sBtfnNgQG8RxaDnRt2nPt2Op1oY6ZoTSzDMdaBV26EqMxTVCGox6lOAITY1DzGeUtlQkRqWbsFbVlXsARHEremWRpLnIM8XynDl8pGW9UiQ4hUQELxcCkyctMYdsKZip9GMnu7GL4EWQZ1dNzY59Optg8mD8Wg6Sg-lkOhjJLxE8WwhcopL5nRNVuXp-KhPBexhZYjT9hzq5Z95EtFNEcL-dLd0bKUdgjKFrBDTI_C89lv3hXr8rbf1Lo6dwbTIcyfdvxu8ewnV_2-fgUPoI1prZ3D1GJNXoJ0FZfgLB7xR3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Obtaining+Semiconducting+Single-Walled+Carbon+Nanotubes+for+Transistor+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Islam%2C+Ahmad+E.&rft.au=Rogers%2C+John+A.&rft.au=Alam%2C+Muhammad+A.&rft.date=2015-12-22&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=27&rft.issue=48&rft.spage=7908&rft.epage=7937&rft_id=info:doi/10.1002%2Fadma.201502918&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_C1WXPXCF_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon