A review on human exposure to brominated flame retardants—particularly polybrominated diphenyl ethers

Brominated flame retardants (BFRs) have been and are still heavily used as additive or reactive chemicals in polymers and textiles. Only a few of the BFRs have been assessed in human subjects with a major data set on internal exposures to polybrominated diphenyl ethers (PBDEs). Increasing PBDE level...

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 29; no. 6; pp. 829 - 839
Main Authors Sjödin, Andreas, Patterson, Donald G., Bergman, Åke
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.09.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Brominated flame retardants (BFRs) have been and are still heavily used as additive or reactive chemicals in polymers and textiles. Only a few of the BFRs have been assessed in human subjects with a major data set on internal exposures to polybrominated diphenyl ethers (PBDEs). Increasing PBDE levels have been observed in mothers' milk from Sweden as well as in blood from Germany and Norway. The levels are in general lower than PCB levels. However, the PBDE concentrations found in the North Americans are considerably higher compared to European subjects. The PBDEs are dominated by 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). Decabromodiphenyl ether (BDE-209) is reported both in the general population and in occupationally exposed persons showing the bioavailability of this high molecular weight compound. While the lower and medium brominated diphenyl ethers are persistent, BDE-209 has a fairly short half-life of approximately 2 weeks. Tetrabromobisphenol A (TBBPA) is readily eliminated in humans showing a half-life of about 2 days. Still, TBBPA is accumulated in humans but a continuous exposure to this BFR is required to maintain a certain level in the human subject. TBBPA has not been detected in the general population but in people exposed at work. The current review addresses human exposure routes and levels of BFRs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
ISSN:0160-4120
1873-6750
DOI:10.1016/S0160-4120(03)00108-9