Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15

The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 168; no. 2; pp. 602 - 608
Main Authors Bui, Tung Xuan, Choi, Heechul
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.09.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption–desorption measurement, and point of zero charge (PZC) measurement. Pharmaceutical adsorption kinetics was rapid and occurred on a scale of minutes, following a pseudo-second-order rate expression. Adsorption isotherms were best fitted by the Freundlich isotherm model. High removal rates of individual pharmaceuticals were achieved in acidic media (pH 3–5) and reached 85.2% for carbamazepine, 88.3% for diclofenac, 93.0% for ibuprofen, 94.3% for ketoprofen, and 49.0% for clofibric acid at pH 3 but decreased with increase in pH. SBA-15 also showed high efficiency for removal of a mixture of 5 pharmaceuticals. Except for clofibric acid (35.6%), the removal of pharmaceuticals in the mixture ranged from 75.2 to 89.3%. Based on adsorption and desorption results, the mechanism of the selected pharmaceuticals was found to be a hydrophilic interaction, providing valuable information for further studies to design materials for the purpose. The results of this study suggest that mesoporous-silica-based materials are promising adsorbents for removing pharmaceuticals from not only surface water but also wastewater of pharmaceutical industrial manufactures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2009.02.072