miR-223-3p as a potential biomarker and player for adipose tissue dysfunction preceding type 2 diabetes onset

Circulating microRNAs (miRNAs) have been proposed as biomarkers for type 2 diabetes (T2D). Adipose tissue (AT), for which dysfunction is widely associated with T2D development, has been reported as a major source of circulating miRNAs. However, the role of dysfunctional AT in the altered pattern of...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 23; pp. 1035 - 1052
Main Authors Sánchez-Ceinos, Julia, Rangel-Zuñiga, Oriol A., Clemente-Postigo, Mercedes, Podadera-Herreros, Alicia, Camargo, Antonio, Alcalá-Diaz, Juan Francisco, Guzmán-Ruiz, Rocío, López-Miranda, José, Malagón, María M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.03.2021
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Circulating microRNAs (miRNAs) have been proposed as biomarkers for type 2 diabetes (T2D). Adipose tissue (AT), for which dysfunction is widely associated with T2D development, has been reported as a major source of circulating miRNAs. However, the role of dysfunctional AT in the altered pattern of circulating miRNAs associated with T2D onset remains unexplored. Herein, we investigated the relationship between T2D-associated circulating miRNAs and AT function, as well as the role of preadipocytes and adipocytes as secreting cells of candidate circulating miRNAs. Among the plasma miRNAs related to T2D onset in the CORonary Diet Intervention with Olive oil and cardiovascular PREVention (CORDIOPREV) cohort, baseline miR-223-3p levels (diminished in patients who next developed T2D [incident-T2D]) were significantly related to AT insulin resistance (IR). Baseline serum from incident-T2D participants induced inflammation and IR in 3T3-L1 adipocytes. We demonstrated that tumor necrosis factor (TNF)-α inhibited miR-223-3p secretion while enhancing miR-223-3p intracellular accumulation in 3T3-L1 (pre)adipocytes. Overexpression studies showed that an intracellular increase of miR-223-3p impaired glucose and lipid metabolism in these cells. Our findings provide mechanistic insights into the alteration of circulating miRNAs preceding T2D, unveiling both preadipocytes and adipocytes as miR-223-3p-secreting cells and suggesting that inflammation promotes miR-223-3p intracellular accumulation, which might contribute to (pre)adipocyte dysfunction and body metabolic dysregulation. [Display omitted] The relationship between adipose dysfunction and circulating miRNAs associated with T2D onset was investigated. Low circulating miR-223-3p related to adipose tissue insulin resistance index (ATIRI) in incident-T2D subjects. Both preadipocytes and adipocytes secrete miR-223-3p, and inflammation-induced intracellular miR-223-3p accumulation leads to cell dysfunction, which might contribute to body metabolic dysregulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-2531
2162-2531
DOI:10.1016/j.omtn.2021.01.014