Kinetic Resolution of Alkylidene Norcamphors via a Ligand-Controlled Umpolung-Type 1,3-Dipolar Cycloaddition
Development of a general catalytic and highly efficient method utilizing readily available precursors for the regio- and stereoselective construction of bioactive natural-product-inspired spiro architectures remains a formidable challenge in chemical research. Transition metal-catalyzed asymmetric 1...
Saved in:
Published in | iScience Vol. 11; pp. 146 - 159 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.01.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Development of a general catalytic and highly efficient method utilizing readily available precursors for the regio- and stereoselective construction of bioactive natural-product-inspired spiro architectures remains a formidable challenge in chemical research. Transition metal-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides produces numerous N-heterocycles, but reaction control with the regioselectivity opposite to the conventional fashion has rarely been demonstrated. Herein, we report a unique ligand-controlled Cu(I)-catalyzed umpolung-type 1,3-dipolar cycloaddition of azomethine ylide to realize efficient kinetic resolution of racemic alkylidene norcamphors with the concomitant construction of previously inaccessible spiro N-heterocycles with high levels of regio- and stereoselectivity. The success of this methodology relies on the strategy of kinetic resolution, and the serendipitous discovery of a unique ligand-enabled regiospecific cycloaddition, which not only provides evidence for the existence of the minor zwitterionic resonance form in metallated azomethine ylide but also diversifies the existing chemistry of azomethine ylide-involved 1,3-dipolar cycloadditions with rare polarity inversion.
[Display omitted]
•Kinetic resolution of racemic alkylidene norcamphors•Spiro architectures incorporating norbornane and pyrrolidine scaffolds•Unique ligand-enabled umpolung-type 1,3-dipolar cycloaddition
Chemistry; Organic Chemistry; Organic Synthesis |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2018.12.010 |