Feasibility of Same-Day Prostate Fiducial Markers, Perirectal Hydrogel Spacer Placement, and Computed Tomography and Magnetic Resonance Imaging Simulation for External Beam Radiation Therapy for Low-Risk and Intermediate-Risk Prostate Cancer

The use of prostate fiducial markers and perirectal hydrogel spacers can reduce the acute and late toxic effects associated with prostate radiation therapy. These procedures are usually performed days to weeks before simulation during a separate clinic visit to ensure resolution of procedure-related...

Full description

Saved in:
Bibliographic Details
Published inPractical radiation oncology Vol. 12; no. 2; p. e117
Main Authors Brenneman, Randall J, Goddu, S Murty, Andruska, Neal, Roy, Amit, Bosch, Walter R, Fischer-Valuck, Benjamin, Efstathiou, Jason A, Gay, Hiram A, Michalski, Jeff M, Baumann, Brian C
Format Journal Article
LanguageEnglish
Published United States 01.03.2022
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The use of prostate fiducial markers and perirectal hydrogel spacers can reduce the acute and late toxic effects associated with prostate radiation therapy. These procedures are usually performed days to weeks before simulation during a separate clinic visit to ensure resolution of procedure-related inflammation. The purpose of this study was to assess whether same-day intraprostatic fiducial marker placement, perirectal hydrogel injection, and computed tomography (CT) and magnetic resonance imaging (MRI) simulation were feasible without adversely affecting hydrogel volume, perirectal spacing, or rectal dose. If feasible, performing these procedures on the same day as simulation would expedite the start of radiation therapy, improve patient convenience, and reduce costs. Twenty-one patients with clinically localized prostate cancer who were enrolled on a prospective clinical trial (NCT01617161) underwent same-day marker placement, hydrogel injection, and CT and MRI simulation, then underwent T2 MRI verification scans 3 to 4 weeks later. The MRI scans were fused to the CT planning scans by clinical target volumes (CTVs) to generate comparison treatment plans (70 Gy in 28 fractions). Hydrogel volume and symmetry, perirectal spacing, CTV dose, and organ-at-risk dose were evaluated. Verification scans occurred a mean of 24.9 ± 4.6 days after simulation and 9.3 ± 4.9 days after treatment start. Prostate volume did not change between scans (median, 67.3 ± 22.1 cm vs 64.1 ± 21.8 cm ; P = .64). The median hydrogel change between simulation and verification was 1.8% ± 4.5% (P = .27). No significant differences in perirectal spacing (midgland: 1.33 ± 0.45 cm vs 1.3 ± 0.7 cm; 1 cm superior: 1.25 ± 0.95 cm vs 1.43 ± 0.91 cm; 1 cm inferior: 1.16 ± 0.28 cm vs 1.41 ± 0.49 cm) were identified. No significant differences in rectal V66 (median 2.3 ± 2.18% vs 2.3 ± 2.28%; P = .99), V35 (median 14.79 ± 7.61 vs 14.67 ± 8.4; P = .73), or D1cc (65.7 ± 9.2 Gy vs 68.2 ± 9.0 Gy; P = .80) were found. All plans met CTV and organ-at-risk constraints. Same-day placement of intraprostatic fiducial markers, perirectal hydrogel, and simulation scans was feasible and did not significantly affect hydrogel volume, position, CTV coverage, or rectal dose.
ISSN:1879-8519
DOI:10.1016/j.prro.2021.09.015