Obtaining Human Breast Adipose Cells for Breast Cancer Cell Co-culture Studies

Primary human breast cancers invade surrounding fat and contact adipocytes, inflammatory infiltrates, and fibrous stroma. This tissue niche influences breast tumor progression. Here, we present a protocol to enable the in vitro study of the complex interactions that occur between breast cancer cells...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 1; no. 3; p. 100197
Main Authors Picon-Ruiz, Manuel, Marchal, Juan A., Slingerland, Joyce M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.12.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Primary human breast cancers invade surrounding fat and contact adipocytes, inflammatory infiltrates, and fibrous stroma. This tissue niche influences breast tumor progression. Here, we present a protocol to enable the in vitro study of the complex interactions that occur between breast cancer cells and adipose cells. We describe how to obtain different adipose cell populations, including adipose-derived stem cells, immature adipocytes, and mature adipocytes, from human breast fat tissue and detail the application for co-culture assays with breast cancer cells. For complete details on the use and execution of this protocol, please refer to Picon-Ruiz et al. (2016) and Qureshi et al. (2020). [Display omitted] •Obtaining different adipose cell populations from human breast fat samples•Isolation of mature adipocytes, immature adipocytes, and hASC•Co-culture of breast cancer cells with isolated primary human breast fat populations Primary human breast cancers invade surrounding fat and contact adipocytes, inflammatory infiltrates, and fibrous stroma. This tissue niche influences breast tumor progression. Here, we present a protocol to enable the in vitro study of the complex interactions that occur between breast cancer cells and adipose cells. We describe how to obtain different adipose cell populations, including adipose-derived stem cells, immature adipocytes, and mature adipocytes, from human breast fat tissue and detail the application for co-culture assays with breast cancer cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
Technical Contact
ISSN:2666-1667
2666-1667
DOI:10.1016/j.xpro.2020.100197