Protocol for high-throughput compound screening using flow cytometry in THP-1 cells
Flow cytometry is a valuable method for analyzing protein expressions at the single cell level but can be difficult to apply to large numbers of samples. This protocol provides instructions to perform a high-throughput small molecule screen using flow cytometry analysis of THP-1 cells, a human monoc...
Saved in:
Published in | STAR protocols Vol. 2; no. 2; p. 100400 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.06.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Flow cytometry is a valuable method for analyzing protein expressions at the single cell level but can be difficult to apply to large numbers of samples. This protocol provides instructions to perform a high-throughput small molecule screen using flow cytometry analysis of THP-1 cells, a human monocytic leukemia cell line. We describe a methodology for identifying compounds that regulate PD-L1 surface expression in IFN-γ-stimulated cells, which has been successfully used to screen a collection of ∼200,000 compounds.
For complete details on the use and execution of this protocol, please refer to Zavareh et al. (2020).
[Display omitted]
•Protocol for high-throughput screening of compounds using flow cytometry•Designed for quantification of cell surface expression of proteins in THP-1 cells•This protocol has been used to identify modulators of PD-L1 expression
Flow cytometry is a valuable method for analyzing protein expressions at the single cell level but can be difficult to apply to large numbers of samples. This protocol provides instructions to perform a high-throughput small molecule screen using flow cytometry analysis of THP-1 cells, a human monocytic leukemia cell line. We describe a methodology for identifying compounds that regulate PD-L1 surface expression in IFN-γ-stimulated cells, which has been successfully used to screen a collection of ∼200,000 compounds. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Technical contact Lead contact |
ISSN: | 2666-1667 2666-1667 |
DOI: | 10.1016/j.xpro.2021.100400 |