Single-Cell Optogenetic Control of Calcium Signaling with a High-Density Micro-LED Array
Precise optogenetic control, ideally down to single cells in dense cell populations, is essential in understanding the heterogeneity of cell networks. Devices with such capability, if built in a chip scale, will advance optogenetic studies at cellular levels in a variety of experimental settings. He...
Saved in:
Published in | iScience Vol. 21; pp. 403 - 412 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.11.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Precise optogenetic control, ideally down to single cells in dense cell populations, is essential in understanding the heterogeneity of cell networks. Devices with such capability, if built in a chip scale, will advance optogenetic studies at cellular levels in a variety of experimental settings. Here we demonstrate optogenetic control of intracellular Ca2+ dynamics at the single cell level using a 16-μm pitched micro-light emitting diode (LED) array that features high brightness, small spot size, fast response, and low voltage operation. Individual LED pixels are able to reliably trigger intracellular Ca2+ transients, confirmed by fluorescence microscopy and control experiments and cross-checked by two genetically coded Ca2+ indicators. Importantly, our array can optogenetically address individual cells that are sub-10 μm apart in densely packed cell populations. These results suggest the possible use of the micro-LED array toward a lab-on-a-chip for single-cell optogenetics, which may allow for pharmaceutical screening and fundamental studies on a variety of cell networks.
[Display omitted]
•Precise optogenetic control of Ca2+ signaling down to the single cell level•Bright, localized optogenetic stimulus with a high-density micro-LED array•Advancing micro-LED arrays toward a lab-on-a-chip for single-cell optogenetics
Techniques in Genetics; Cellular Neuroscience; Techniques in Neuroscience; Bioelectronics; Electronic Materials |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2019.10.024 |